The Journal of Organic Chemistry
ARTICLE
added 9-BBN (0.5 M in THF, 1.0 mL, 0.5 mmol), and the mixture was
allowed to stir. After 1.5 h, MeOH (2 mL) was added to the flask,
followed by NaOH (3 M, 0.5 mL, 1.5 mmol) and then H2O2 (0.5 mL,
4.4 mmol), and the resulting mixture was heated at 50 °C for 1 h. The
reaction mixture was washed with saturated NaCl, and the aqueous
portions were retained and extracted with CH2Cl2. The organic portions
were combined, dried (MgSO4), and concentrated in vacuo. The
resulting oil was purified via flash chromatography (silica gel, 0 to
40% EtOH in EtOAc) to obtain compound 22 as a clear oil (64 mg,
’ ACKNOWLEDGMENT
Financial support from the NIH Predoctoral Training Pro-
gram in the Pharmacological Sciences (2 T32 GM067795), the
U.S. Department of Education (GAANN award P200A070526),
and the Roy J. Carver Charitable Trust as a Research Program of
Excellence is gratefully acknowledged.
’ REFERENCES
1
57%): H NMR δ 4.30À4.17 (m, 12H), 3.63 (t, J = 6.3 Hz, 2H),
(1) For an excellent review of the chemistry and biological activity of
bisphosphonates, see: Ebetino, F. H.; Hogan, A.-M.; Sun, S.; Tsoumpra,
M.; Duan, A.; Triffitt, J. T.; Kwaasi, A. A.; Dunford, J. E.; Barnettt, B. L.;
Oppermann, U.; Lundy, M. W.; Boyde, A.; Kashemirov, B. A.; McKenna,
C. E.; Russell, R. G. G. Bone 2011, 49, 20–33.
2.18À2.03 (m, 3H), 1.90À1.82 (m, 2H), 1.60À1.53 (m, 2H),
1.44À1.28 (m, 22); 13C NMR δ 63.5À63.2 (m, 6C), 62.8, 50.6
(q, JPC = 119.5 Hz), 32.7, 30.8 (q, JPC = 5.3 Hz), 30.3, 25.5 (q, JPC = 5.3
Hz), 25.3, 16.5À16.2 (6C); 31P NMR +18.8 ppm; HRMS calcd for
C19H43O10NaP3 (M + Na)+, 547.1967, found 547.1991.
(2) For representative syntheses of bisphosphonates via addition to
alkylidene bisphosphonates, see: (a) Sturtz, G.; Guervenou, J. Synthesis
1991, 661. (b) Hutchinson, D. W.; Thornton, D. M. J. Organomet. Chem.
1988, 346, 341. For synthesis via alkylation of methylenebisphospho-
nates, see:(c) Kosolapoff, G. M. J. Am. Chem. Soc. 1953, 75, 1500–1501.
(d) Quimby, O. T.; Curry, J. D.; Nicholson, D. A.; Prentice, J. B.; Roy,
C. H. J. Organomet. Chem. 1968, 13, 199–207. (e) Shull, L. W.; Wiemer,
A. J.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. 2006, 14, 4130–4136.
(f) Barney, R. J.; Wasko, B. M.; Dudakovic, A.; Hohl, R. J.; Wiemer, D. F.
Bioorg. Med. Chem. 2010, 18, 7212–7220. For a synthesis via two CÀP
bond formations and lead references to other strategies, see:(g) Du, Y.;
Jung, K. Y.; Wiemer, D. F. Tetrahedron Lett. 2002, 43, 8665–8668.
(3) For representative reports of biologically active bisphos-
phonates, see: (a) Kashemirov, B. A.; Bala, J. L.; Chen, X.; Ebetino,
F. H.; Xia, Z.; Russell, R. G. G.; Coxon, F. P.; Roelofs, A. J.; Rogers, M. J.;
McKenna, C. E. Bioconjugate Chem. 2008, 19, 2308–2310. (b) Singh,
A. P.; Zhang, Y.; No, J. H.; Docampo, R.; Nussenzweig, V.; Oldfield, E.
Antimicrob. Agents Chemother. 2010, 54, 2987–2993. (c) Holstein, S. A.;
Cermak, D. M.; Wiemer, D. F.; Lewis, K.; Hohl, R. J. Bioorg. Med. Chem.
1998, 6, 687–694. (d) Wiemer, A. J.; Yu, J. S.; Lamb, K. M; Hohl, R. J.;
Wiemer, D. F. Bioorg. Med. Chem. 2008, 16, 390–399 and references
therein.
1-Benzyl-4-[2,2,2-tris(diethyoxyphosphinyl)ethyl-1H-1,2,
3-triazole (23). Benzyl bromide (182 mg, 1.1 mmol) was added to a
suspension of sodium azide (83 mg, 1.3 mmol) in DMF (5 mL), and the
resulting mixture was allowed to stir. After 10 min, trisphosphonate 16
(164 mg, 0.4 mmol) was added along with 0.1 mL of CuSO4 (5 M),
sodium ascorbate (43 mg, 0.2 mmol), and a solution of tBuOH in water
(1:4 ratio, 5 mL), and the reaction mixture was allowed to stir at room
temperature. After 24 h EDTA and 1 M NH4OH were added, the
resulting solution was placed in a continuous liquidÀliquid extractor and
extracted for 4 h with EtOAc. The organic portion was retained and
concentrated in vacuo. The resulting oil was purified via flash chromatog-
raphy (silica gel, 0 to 50% EtOH in EtOAc) to provide the desired triazole
23 (179 mg, 85%): 1H NMR δ 7.95 (s, 1H), 7.35À7.31 (m, 5H), 5.47 (s,
2H), 4.22À4.07 (m, 12H), 3.66 (q, JPH = 15.9 Hz, 2H), 1.26À1.21(m,
18H); 13CNMR δ143.3 (q, JPC = 7.4 Hz), 135.2, 128.9 (2C), 128.4, 128.0
(2C), 124.7, 63.7À63.4 (m, 6C), 53.9, 50.6 (q, JPC = 119.2 Hz), 27.9, (q,
JPC = 5.5 Hz), 16.4À16.1 (m, 6C); 31P NMR +17.6 ppm; HRMS calcd for
C23H40N3O9NaP3 (M + Na)+, 618.1875, found 618.1893.
3-Butenylidynetrisphosphonic Acid, Pentasodium, 2,4,6-
Trimethylpyridinium Salt (24). A solution of 2,4,6-collidine (524 mg,
4.3 mmol) and TMSBr (568 mg, 4.3 mmol) was allowed to stir in an
ice bath. After 20 min, trisphosphonate 11 (75 mg, 0.2 mmol) was added,
and the reaction was allowed to stir for 24 h with periodic monitoring by
31P NMR spectroscopy. Once the reaction was complete, it was diluted
by addition of toluene, the solvent was removed in vacuo, and aqueous
sodium hydroxide (1.5 mmol, 9 equiv) was added. The mixture was
allowed to stir overnight and again was monitored by 31P NMR. The
reaction mixture then was lyophilized, and the resulting solid was dissolved
in a minimum amount of water, then slowly poured into cold acetone,
and kept at 40 oC overnight. The resulting precipitate was filtered and
washed with cold acetone. The remaining residue was dissolved in water
and lyophilized to afford compound 24 as a flocculent white residue (51 mg,
60%): 1H NMR (D2O) δ 7.43 (s, 2H), 6.19À6.10 (m, 1H), 5.23À5.05
(m, 2H), 2.92À 2.85 (m, 2H), 2.93 (s, 6H), 2.50 (s, 3H); 13C NMR
(D2O) δ 164.1 (2C), 155.8, 139.1À139.0 (m), 129.2, 121.6 (2C), 52.3 (q,
JPC = 103.6 Hz), 38.6, 25.3 (2C), 22.5; 31P NMR (121 MHz, D2O) +17.5
ppm; HRMS calcd for C4H10O9P3 (M À H)À, 294.9538, found 294.9542.
(4) Battacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–431.
(5) (a) Kukhar, V. P.; Pasternak, V. I.; Kirsanov, A. V. Zh. Obshch.
Khim. 1972, 42, 1169. (b) Gross, H.; Costisella, B. J. Prakt. Chem. 1972,
314, 87–92. (c) Gross, H.; Costisella, B.; Brennnick, L.; Engelhardt, G.
J. Prakt. Chem. 1972, 314, 969–974.
(6) Gross, H.; Costisella, B.; Keitel, I.; Ozegowski, S. Phosphorus,
Sulfur Silicon Relat. Elem. 1993, 83, 203–207.
(7) Gross, H.; Ozegowski, S.; Costisella, B. Phosphorus, Sulfur Silicon
Relat. Elem. 1990, 47, 7–13.
(8) (a) Lee, K.; Wiemer, D. F. J. Org. Chem. 1991, 56, 5556–5560.
(b) Boeckman, R. K., Jr.; Kamenecka, T. M.; Nelson, S. G.; Pruit, J. R.;
Barta, T. E. Tetrahedron Lett. 1991, 32, 2581–2584.
(9) (a) Liu, X.; Zhang, X.; Blackburn, G. M. Chem. Commun.
1997, 87–88. (b) Liu, X.; Adams, H.; Blackburn, G. M. Chem. Commun.
1998, 2619–2620.
(10) (a) Calogeropoulou, T.; Hammond, G. B.; Wiemer, D. F. J. Org.
Chem. 1987, 52, 4185–4190. (b) Du, Y.; Wiemer, D. F. J. Org. Chem.
2002, 67, 5701–5708. (c) Chen, X.; Wiemer, D. F. J. Org. Chem. 2003,
68, 6597–6604 and references therein. (d) Barney, R. J.; Richardson,
R. M.; Wiemer, D. F. J. Org. Chem. 2011, 76, 2875–2879.
’ ASSOCIATED CONTENT
(11) (a) Schwartz, C.; Raible, J.; Mott, K.; Dussault, P. H. Tetra-
hedron 2006, 62, 10747–10752. (b) Schwartz, C.; Raible, J.; Mott, K.;
Dussault, P. H. Org. Lett. 2006, 8, 3199–3201.
Supporting Information. 1H and 13C NMR spectra for
S
b
compounds 10À16 and 19À24 and titration curve for com-
pound 7. This material is available free of charge via the Internet
(12) Rubin, M. B. J. Chem. Educ. 1964, 41, 388.
(13) (a) Chatterjee, A. K.; Sanders, D. P.; Grubbs, R. H. Org. Lett.
2002, 4, 1939–1942. (b) Chatterjee, A. K.; Choi, T.; Grubbs, R. H.
Synlett 2001, 1034–1037. (c) Gibson, S. E.; Haycock, P. R.; Miyazaki, A.
Tetrahedron 2009, 65, 7498–7503. (d) Rambabu, C.; Tan, M. M. K.;
Hanson, P. R. J. Org. Chem. 2011, 76, 3909–3916.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: david-wiemer@uiowa.edu.
(14) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021.
8812
dx.doi.org/10.1021/jo201523w |J. Org. Chem. 2011, 76, 8807–8813