studies by examining metal acetylides as the first nucleo-
philic component in our dialkylation sequence. We envi-
sioned that a multifunctional catalyst could be used to
directly assemble an all-carbon substituted tertiary center
via the controlled addition of an acetylide and a second
carbon nucleophile to an aromatic aldehyde (eq 1).6 This
cascade design would greatly enhance synthetic efficiency7
by streamlining the CÀC bond-forming process.8 Herein,
we report the implementation of this concept toward the
successful construction of symmetrical and unsymmetrical
1,4-diynes directly from dielectrophilic aldehydes.
(Table 1, entry 1).13 However, replacement of TMSCl with
Ac2O increased the yield of 3a to 65% yield (entry 2).14 The
addition of Ac2O is likely facilitating propargylic CÀO
activation.
In light of our previous finding that phosphine additives
dramatically affect titanocene-catalyzed CÀC bond for-
mations, we examined this phenomenon in the formation
of 1,4-diynes.3 Gratifyingly, the addition of (4-MeO-
C6H4)3P (20 mol %) effectively increased the yield of 3a
to 83% (entries 3). A similar effect was observed with
benzaldehyde (1b) wherein the addition of phosphine
increased the yield of 1,4-diyne 3b from 20% to 66%
(entries 4 and 5).15 Upon further investigation, we discove-
red that the yield of 1,4-diyne 3 was highly dependent on
the nature and amount of phosphine employed. Tributyl-
phosphine and triphenylphosphite gave <5% of 3b
(entries 6 and 7), and electron-rich aryl phosphines failed
Although the metal-catalyzed addition of acetylides to
aldehydes is well established,9 introduction of two acety-
lenes to yield 1,4-diynes, a synthetically versatile subunit
that allows access to polyunsaturated fatty acids, leuko-
trienes, and prostaglandins10 is less precedented.11,12
Therefore, we began our studies by examining the addition
of two alkynes to a dielectrophilic aldehyde as a means of
assembling this architectural motif. Treatment of aldehyde
1a and iodoalkyne 2a with Cp2TiCl2 (5 mol %), Zn(0), and
TMSCl in CH2Cl2 provided diyne 3a in only 12% yield
Table 1. Optimized 1,4-Diyne Formationa
entry
X
additive
R
Y mol % yield (%)b
1
2
OMe (1a) Ac2O
OMe (1a) Ac2O
OMe (1a) Ac2O
no phosphine
no phosphine
4-MeO-C6H4
no phosphine
4-MeO-C6H4
n-Bu
À
12 (3a)
65 (3a)
83 (3a)
20 (3b)
66 (3b)
0 (3b)
(6) For recent reviews, see: (a) Felpin, F.-X.; Fouquet, E. Chem-
€
Reactions; Springer: Berlin, 2006.
À
SusChem 2008, 1, 718. (b) Muller, T. J. J. Metal Catalyzed Cascade
3
20
À
4
H (1b)
H (1b)
H (1b)
H (1b)
H (1b)
H (1b)
H (1b)
Ac2O
Ac2O
Ac2O
Ac2O
Ac2O
Ac2O
Ac2O
(7) For reviews on tandem reactions, see: (a) Ambrosini, L. M.;
Lambert, T. H. ChemCatChem 2010, 2, 1373. (b) Wender, P. A.; Verma,
V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. (c) Trost,
B. M. Angew. Chem., Int. Ed. 1995, 34, 259. (d) Trost, B. M. Science
1991, 254, 1471.
(8) (a) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993.
(b) Davies, H.; Sorensen, E. Chem. Soc. Rev. 2009, 38, 2981. (c) Nicolaou,
K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45,
7134. (d) Tietze, L. F. Chem. Rev. 1996, 96, 115. (e) Tietze, L. F.; Beifuss,
U. Angew. Chem., Int. Ed. 1993, 32, 131.
(9) (a) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963.
(b) Trost, B.; O’Boyle, B.; Hund, D. J. Am. Chem. Soc. 2009, 131, 15061.
(c) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. Org. Lett. 2007, 9, 3901.
(d) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855. (f) Sasaki, H.; Boyall, D.;
Carreira, E. Helv. Chim. Acta 2001, 84, 964.
5
20
20
20
6
7
OPh
<5 (3b)
34c (3b)
58c (3b)
80 (3b)
8
2,4,6-MeO-C6H4 20
9
4-MeO-C6H4
4-MeO-C6H4
10
40
10
a Reaction conditions: 1 (0.40 mmol), 2a (0.96 mmol), Cp2TiCl2
(2.0 mol %), Zn (0.84 mmol), TMSCl or Ac2O (0.80 mmol), and
phosphine at 0.1 M for 2 h at rt. b Isolated yields. c Yields determined
by 500 MHz 1H NMR.
(10) (a) Lim, Y. J.; Lee, C.-O.; Hong, J.; Kim, D.-k.; Im, K. S.; Jung,
J. H. J. Nat. Prod. 2001, 64, 1565. (b) Chill, L.; Miroz, A.; Kashman, Y.
J. Nat. Prod. 2000, 63, 523. (c) Bew, R. E.; Chapman, J. R.; Jones,
E. R. H.; Lowe, B. E.; Lowe, G. J. Chem. Soc. C 1966, 129.
(11) (a) For the synthesis of symmetrical 1,4-diynes, see: (a) Yadav,
J. S.; Reddy, B. V. S.; Chandrakanth, D.; Prashant, B. Chem. Lett. 2008,
37, 954. (b) Yadav, J. S.; Reddy, B. V.; Thrimurtulu, N.; Reddy, N.;
Prasad, A. R. Tetrahedron Lett. 2008, 49, 2031. (c) Montel, F.; Beau-
degnies, R.; Kessabi, J.; Martin, B.; Muller, E.; Wendeborn, S.; Jung,
P. M. J. Org. Lett. 2006, 8, 1905. (d) Kessabi, J.; Beaudegnies, R.; Jung,
P. M. J.; Martin, B.; Montel, F.; Wendeborn, S. Org. Lett. 2006, 8, 5629.
(e) Tedeschi, C.; Saccavini, C.; Maurette, L.; Soleilhavoup, M.; Chauvin,
R. J. Organomet. Chem. 2003, 670, 151.
to improve the yield of 3b (entry 8). These results indicate
that the relative size and basicity of added phosphine
profoundly affects the amount of 1,4-diyne obtained.
Lowering the amount of (4-MeO-C6H4)3P from 20 to
10 mol % led to a modest decrease in the yield of 3b
(entry 9). However, increasing the amount of (4-MeO-
C6H4)3P to 40 mol % provided 3b in an improved 80%
yield (entry 10). Interestingly, when the amount of phos-
phine exceeded 40 mol %, little improvement was observed.
Withoptimizedconditions in hand, we examineda series
of aldehydes in the formation of symmetrical 1,4-diynes
(Table 2). In general, electron-rich benzaldehyde deriva-
tives provided 1,4-diynes in good toexcellent yields(entries
ꢀ
ꢀ
(12) (a) Tejedor, D.; Lopez-Tosco, S.; Gonzalez-Platas, J.; Garcıa-
Tellado, F. Chem.;Eur. J. 2009, 15, 838. (b) Kuninobu, Y.; Ishii, E.;
Takai, K. Angew. Chem., Int. Ed. 2007, 46, 3296. (c) Amemiya, R.; Suwa,
K.; Toriyama, J.; Nishimura, Y.; Yamaguchi, M. J. Am. Chem. Soc.
2005, 127, 8252.
(13) Enemaerke, R.; Larsen, J.; Skrydstrup, T.; Daasbjerg, K. J. Am.
Chem. Soc. 2004, 126, 7853.
(14) Kunishima, M.; Nakata, D.; Tanaka, S.; Hioki, K.; Tani, S.
Tetrahedron 2000, 56, 9927.
(15) The remaining material was recovered as unreacted benzalde-
hyde.
Org. Lett., Vol. 13, No. 20, 2011
5681