10.1002/adsc.201701474
Advanced Synthesis & Catalysis
Conclusion
6155; d) J.-A. Ma, D. Cahard, Chem. Rev. 2008, 108,
PR1.
In conclusion, we conducted a detailed study of the
[3] a) H. Chachignon, E. V. Kondrashov, D. Cahard,
diastereoselective
electrophilic
Fluorine
Notes
2017,
113,
DOI
trifluoromethylthiolation of Evans-type chiral lithium
imide enolates to afford -SCF3-substituted carbonyl
compounds with high to total relative stereocontrol.
The new stereogenic secondary carbon centres that
feature the SCF3 motif are formed via a highly
predictable stereochemical transition-state model.
Cleavage of the chiral auxiliary allowed to obtain
enantiomerically pure -SCF3-substituted alcohols
without racemisation. This synthetic route represents a
great improvement compared to the method via
organocatalytic trifluoromethylthiolation of aldehydes
that afforded only 11% ee for the same compound, i.e.
4a. Despite all our efforts, isolated diastereopure
products could not be transformed into enantiopure
methyl esters because of partial racemisation leading
to 96:4 er at best.
10.17677/fn20714807.2017.04.03; b) M. Li, X.-S. Xue,
J.-P. Cheng, ACS Catal. 2017, 7, 7977–7986.
[4] X. Wang, T. Yang, X. Cheng, Q. Shen, Angew. Chem.,
Int. Ed. 2013, 52, 12860–12864.
[5] T. Bootwicha, X. Liu, R. Pluta, I. Atodiresei, M.
Rueping, Angew. Chem., Int. Ed. 2013, 52, 12856–
12859.
[6] Q.-H. Deng, C. Rettenmeier, H. Wadepohl, L. H. Gade,
Chem. Eur. J. 2014, 20, 93–97.
[7] B.-L. Zhao, D.-M. Du, Org. Lett. 2017, 19, 1036–1039.
[8]M. Rueping, X. Liu, T. Bootwicha, R. Pluta, C. Merkens,
Chem. Commun. 2014, 50, 2508–2511.
[9] T. Yang, Q. Shen, L. Lu, Chinese J. Chem. 2014, 32,
678–680.
Experimental Section
[10] X. L. Zhu, J. H. Xu, D. J. Cheng, L. J. Zhao, X. Y. Liu,
B. Tan, Org. Lett. 2014, 16, 2192–2195.
General procedure for the diasteroselective electrophilic
trifluoromethylthiolation of oxazolidinone derivatives:
LiHMDS (1M solution in THF, 0.30 mmol, 1.2 equiv.) was
added dropwise to a solution of substrate (0.25 mmol, 1.0
equiv.) in 2 mL dry THF cooled down to –78 °C, under
nitrogen atmosphere. After 30 minutes of stirring, a solution
of appropriate SCF3 reagent (0.28 mmol, 1.1 equiv. of N-
SCF3 phthalimide / 0.38 mmol, 1.5 equiv of N-SCF3
saccharin) in 1.5 mL dry THF was slowly added to the
reaction mixture, which was then stirred at –78 °C for 7 h.
The reaction was then quenched by addition of 1.5 mL of
saturated NaHCO3 solution. The reaction mixture was
warmed up to room temperature, diluted with 3 mL of water,
vigorously stirred for 5 minutes, then extracted with EtOAc
(3 x 30 mL). The combined organic layers were washed with
brine, dried over anhydrous Na2SO4 and concentrated under
vacuum. The crude product was purified by silica gel
column chromatography with an appropriate ratio of
cyclohexane and EtOAc as eluent.
[11] K. Liao, F. Zhou, J. S. Yu, W. M. Gao, J. Zhou, Chem.
Commun. 2015, 51, 16255–16258.
[12] X. Liu, R. An, X. Zhang, J. Luo, X. Zhao, Angew.
Chem., Int. Ed. 2016, 55, 5846–5850.
[13] J. Luo, X. Liu, X. Zhao, Synlett 2017, 28, 397–401.
[14] J. Luo, Y. Liu, X. Zhao, Org. Lett. 2017, 19, 3434–
3437.
[15] L. Hu, M. Wu, H. Wan, J. Wang, G. Wang, H. Guo, S.
Sun, New J. Chem. 2016, 40, 6550–6553.
[16] Z. Zhang, Z. Sheng, W. Yu, G. Wu, R. Zhang, W.-D.
Chu, Y. Zhang, J. Wang, Nat Chem 2017, 9, 970–976.
[17] G. Zhao, L. Xu, C. Zheng, H. Wang, Adv. Synth. Catal.
2017, DOI: 10.1002/adsc.201700321.
Acknowledgements
[18] J.-L. Zeng, H. Chachignon, J.-A Ma, D. Cahard, Org.
Lett. 2017, 19, 1974–1977.
This research was partially supported by the Centre National de
la Recherche Scientifique (CNRS), Normandy University, and
Labex SynOrg (ANR-11-LABX-0029). H. C. thanks the French
“Ministère de la Recherche et de l’Enseignement Supérieur” for a
doctoral fellowship. E. K. is grateful to the French Embassy in
Moscow for a Metchnikov research grant.
[19] H. Zhang, X. Leng, X. Wan, Q. Shen, Org. Chem.
Front. 2017, 4, 1051–1057.
[20] V. Matousek, A. Togni, V. Bizet, D. Cahard, Org. Lett.
2011, 13, 5762–5765.
[21] Seminal paper on the use of chiral oxazolidinones as
auxiliaires in aldol condensations: a) D.A. Evans, J.
Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127–
2129; Examples of -sulfenylation of oxazolidinone
imides: b) R. P. Alexander, I. Paterson, Tetrahedron
Lett., 1985, 26, 5339–5340; c) K. Chibale, S. Warren,
Tetrahedron Lett., 1994, 35, 3991–3994; Example of -
thiocyanation of oxazolidinone imides: d) J.R. Falck, S.
Gao, R. N. Prasad, S. R. Koduru, Bioorg. Med. Chem.
Lett., 2008, 18, 1768–1771; For reviews on chiral imide
auxiliaires; e) D. A. Evans, J. T. Shaw, L’actualité
Chimique 2003, 35–38; f) M. M. Heravi, V. Zadsirjan,
Tetrahedron: Asymmetry., 2013, 24, 1149–1188; g) M.
References
[1] a) S. Barata-Vallejo, S. Bonesi, A. Postigo, Org. Biomol.
Chem. 2016, 14, 7150–7182; b) X.-H. Xu, K. Matsuzaki,
N. Shibata, Chem. Rev. 2015, 115, 731–764; c) F.
Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem. 2014,
2415–2428.
[2] a) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev.
2015, 115, 826–870; b) V. Bizet, T. Besset, J.-A. Ma, D.
Cahard, Curr. Top. Med. Chem. 2014, 14, 901–940; c)
J.-H. Lin, J.-C. Xiao, Tetrahedron Lett. 2014, 55, 6147–
6
This article is protected by copyright. All rights reserved.