ACS Catalysis
Page 6 of 7
K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Nickel-Catalyzed
nickel catalysis: from carbon-carbon to carbon-heteroatom bond
formation Org. Chem. Front. 2016, 3, 522. (e) Hopkinson, M. N.;
Sahoo, B.; Li, J.-L.; Glorius, F. Dual Catalysis Sees the Light:
Combining Photoredox with Organo-, Acid, and Transition-Metal
Catalysis Chem. Eur. J. 2014, 20, 3874. (f) Tellis, J. C.; Primer, D.
N.; Molander, G. A. Single-electron Transmetalation in
Organoboron Cross-coupling by Photoredox/Nickel Dual Catalysis.
Science 2014, 345, 433. (g) Zuo, Z.; Ahneman, D. T.; Chu, L.;
Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging
Photoredox with Nickel Catalysis: Coupling of α-Carboxyl sp3-
Carbons with Aryl Halides. Science 2014, 345, 437.
(15) Formation of cobalt-hydride species with silane as the
hydrogen radical source has been reported, see: (a) Matos, J. L. M.;
Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. Branch-
Selective Addition of Unactivated Olefins into Imines and
Aldehydes J. Am. Chem. Soc. 2018, 140, 16976. (b) Green, S. A.;
Crossley, S. W. M.; Matos, J. L. M.; Vásquez-Céspedes, S.; Shevick,
S. L.; Shenvi, R. A. The High Chemofidelity of Metal-Catalyzed
Hydrogen Atom Transfer Acc. Chem. Res. 2018, 51, 2628.
(16) Zimmerman, H. E.; Traxler, M. D. The Stereochemistry of
the Ivanov and Reformatsky Reactions. I J. Am. Chem. Soc. 1957,
79, 1920.
Homoallylation of Aldehydes and Ketones with 1,3-Dienes and
Complementary Promotion by Diethylzinc or Triethylborane Angew.
Chem. Int. Ed. 1999, 38, 397. (c) Kimura, M.; Matsuo, S.; Shibata,
K.; Tamaru, Y. Nickel(0)-Catalyzed Three-Component Connection
Reaction of Dimethylzinc, 1,3-Dienes, and Carbonyl Compounds
Angew. Chem. Int. Ed. 1999, 38, 3386. (d) Kimura, M.; Ezoe, A.;
Tanaka, S.; Tamaru, Y. Nickel-Catalyzed Homoallylation of
Aldehydes in the Presence of Water and Alcohols Angew. Chem. Int.
Ed. 2001, 40, 3600. (e) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y.
Nickel-Catalyzed Addition of Dimethylzinc to Aldehydes across
Alkynes and 1,3-Butadiene:ꢀ An Efficient Four-Component
Connection Reaction J. Am. Chem. Soc. 2005, 127, 201.
(9) (a) Yang, Y.; Zhu, S. F.; Duan, H. F.; Zhou, C. Y.; Wang, L.
X.; Zhou, Q. L. Asymmetric Reductive Coupling of Dienes and
Aldehydes Catalyzed by Nickel Complexes of Spiro
Phosphoramidites: Highly Enantioselective Synthesis of Chiral
Bishomoallylic Alcohols J. Am. Chem. Soc. 2007, 129, 2248. (b)
Sato, Y.; Hinata, Y.; Seki, R.; Oonishi, Y.; Saito, N. Nickel-
Catalyzed Enantio- and Diastereoselective Three-Component
Coupling of 1,3-Dienes, Aldehydes, and Silanes Using Chiral N-
Heterocyclic Carbenes as Ligands Org. Lett. 2007, 9, 5597.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) Köpfer, A.; Sam, B.; Breit, B.; Krische, M. J.
Regiodivergent reductive coupling of 2-substituted dienes to
formaldehyde employing ruthenium or nickel catalyst:
hydrohydroxymethylation via transfer hydrogenation Chem. Sci.
2013, 4, 1876.
(11) (a) Ogoshi, S.; Tonomori, K. I.; Kurosawa, H. Reversible
Carbon−Carbon Bond Formation between 1,3-Dienes and Aldehyde
or Ketone on Nickel(0) J. Am. Chem. Soc. 2006, 128, 7077. (b)
Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y. Regio- and
stereoselective nickel-catalyzed homoallylation of aldehydes with
1,3-dienes J. Am. Chem. Soc. 2006, 128, 8559. (c) Cho, H. Y.;
Morken, J. P. Diastereoselective Construction of Functionalized
Homoallylic Alcohols by Ni-Catalyzed Diboron-Promoted
Coupling of Dienes and Aldehydes J. Am. Chem. Soc. 2008, 130,
16140.
(12) (a) Qi, L.; Chen, Y. Polarity-Reversed Allylations of
Aldehydes, Ketones, and Imines Enabled by Hantzsch Ester in
Photoredox Catalysis Angew. Chem. Int. Ed. 2016, 55, 13312. (b)
Lee, K. N.; Lei, Z.; Ngai, M. Y. β-Selective Reductive Coupling of
Alkenylpyridines with Aldehydes and Imines via Synergistic Lewis
Acid/Photoredox Catalysis J. Am. Chem. Soc. 2017, 139, 5003. (c)
Fuentes de Arriba, A. L.; Urbitsch, F.; Dixon, D. J. Umpolung
synthesis of branched α-functionalized amines from imines via
photocatalytic three-component reductive coupling reactions Chem.
Commun. 2016, 52, 14434. (d) Trowbridge, A.; Reich, D.; Gaunt, M.
J. Multicomponent synthesis of tertiary alkylamines by
photocatalytic olefin-hydroaminoalkylation Nature 2018, 561, 522.
(e) Leitch, J. A.; de Arriba, A. L. F.; Tan, J.; Hoff, O.; Martínez, C.
M.; Dixon, D. J. Photocatalytic reverse polarity Povarov reaction
Chem. Sci. 2018, 9, 6653. (f) Cao, K.; Tan, S. M.; Lee, R.; Yang,
S.;Jia, H.; Zhao, X.; Jiang, Z. Catalytic Enantioselective Addition of
Prochiral Radicals to Vinylpyridines J. Am. Chem. Soc. 2019, 141,
5437. (g) Lee, K. N.; Ngai, M. Y. Recent developments in
transition-metal photoredox-catalysed reactions of carbonyl
derivatives Chem. Commun. 2017, 53, 13093.
(17) Morais, A. R.; Dworakowska, S.; Reis, A.; Gouveia, L.;
Matos, C. T.; Bogdał, D.; Bogel-Łukasik; R. Chemical and
biological-based isoprene production: Green metrics. Catal. Today,
2015, 239, 38-43.
(18) (a) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.;
Lückemeier, L.; Glorius, F. Diastereoselective Allylation of
Aldehydes by Dual Photoredox and Chromium Catalysis J. Am.
Chem. Soc. 2018, 140, 12705; (b) Mitsunuma, H.; Tanabe, S.; Fuse,
H.; Ohkubo, K.; Kanai, M. Catalytic asymmetric allylation of
aldehydes with alkenes through allylic C(sp3)–H functionalization
mediated by organophotoredox and chiral chromium hybrid
catalysis Chem. Sci. 2019,10, 3459.
(19) Hünig’s base (iPr2NEt) has been found to quench excited
Ir(III) complex more efficiently than Hantzsch ester, see ref 12a.
(20) See reference 14d and (a) Lowry, M. S.; Goldsmith, J. I.;
Slinker, J. D.; Rohl, R.; Pascal, R.A.; Malliaras, G. G.; Bernhard, S.
Single-layer electroluminescent devices and photoinduced hydrogen
production from an ionic iridium (III) complex Chem. Mater. 2005,
17, 5712. (b) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.;
MacMillan, D. W. Switching on elusive organometallic mechanisms
with photoredox catalysis Nature 2015, 524, 330.
(21) Chatterjee, T.; Iqbal, N.; You, Y.; Cho, E. J. Controlled
fluoroalkylation reactions by visible-light photoredox catalysis Acc.
Chem. Res. 2016, 49, 2284.
(22) An alternative reaction pathway cannot be excluded.
Hantzsch ester (HE) can also be excited upon irradiation with
visible light to generate photoexcited HE (*HE), which can donate
i
one electron to [iPr2NEt]•+to generate Pr2NEt along with the HE
radical cation (HE•+). For HE photoexcitation, see: (a) Jung, J.; Kim,
J.; Park, G.; You, Y.; Cho, E. J. Selective Debromination and α-
Hydroxylation of α-Bromo Ketones Using Hantzsch Esters as
Photoreductants. Adv. Synth. Catal. 2016, 358, 74. (b) Meng, Q. Y.;
Schirmer, T. E.; Katou, K.; König, B. Controllable Isomerization of
Alkenes by Dual Visible-Light-Cobalt Catalysis Angew. Chem. Int.
Ed. 2019, 131, 5779. (c) Wang, P. Z.; Chen, J. R.; Xiao, W. J.
Hantzsch esters: an emerging versatile class of reagents in
photoredox catalyzed organic synthesis Org. Biomol. Chem. 2019,
17, 6936.
(13) Meng, Q. Y.; Wang, S.; Huff, G. S.; König, B. Ligand-
Controlled Regioselective Hydrocarboxylation of Styrenes with
CO2 by Combining Visible Light and Nickel Catalysis J. Am. Chem.
Soc. 2018, 140, 3198.
(23) Li, J.; Luo, Y.; Cheo, H. W.; Lan, Y.; Wu, J. Photoredox-
(14) (a) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G.
A. Alkyl Carbon–Carbon Bond Formation by Nickel/Photoredox
Cross-Coupling Angew. Chem. Int. Ed. 2019, 58, 6152. (b) Ruan, L.;
Dong, Z.; Chen, C.; Wu, S.; Sun, J. Recent progress on the
nickel/photoredox dual catalysis Youji Huaxue 2017, 37, 2544. (c)
Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.;
Molander, G. A. Single-Electron Transmetalation via
Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for
sp3–sp2 Cross-Coupling Acc. Chem. Res. 2016, 49, 1429. (d) Gui,
Y.-Y.; Sun, L.; Lu, Z.-P.; Yu, D.-G. Photoredox sheds new light on
Catalysis-Modulated,
Nickel-Catalyzed
Divergent
Difunctionalization of Ethylene Chem, 2019, 5, 192.
(24) Coordination of s-cis conformer of butadiene will form more
stable metal complexes, leading to kinetic preference in the
hydrometalation. For a discussion of diene coordination modes, see:
Murakami, M.; Itami, K.; Ito, Y. Coordination Modes and Catalytic
Carbonylative
[4+1]
Cycloaddition
of
Vinylallenes.
Organometallics 1999, 18, 1326.
(25) The syn-diastereosylectivity is also observed in Ru-
catalyzed reductive coupling of aldehydes with 1,3-diene, see ref 3a
ACS Paragon Plus Environment