Page 5 of 6
ACS Medicinal Chemistry Letters
1.25
1.4
3.1
T (h)
½
1
2
3
4
5
6
7
8
9
10
(1.13ꢀ1.36)
(1.3ꢀ1.5)
(2.7ꢀ3.6)
oral dose
(mg/kg)
13.4
4.3
5.2
13378.6
8015.7
6210.0
AUC (0ꢀinf)
ng*h/mL
(13110.6ꢀ
13645.5)
(7174.5ꢀ
8856.8)
(5274.9ꢀ
7144.2)
Oral F(%)
52b
~100
~100
aData is reported as a mean, with ranges provided in parentheꢀ
ses. bBioavailability (F%) was estimated using mean AUC (0ꢀt)
values due to the nonꢀcrossover study design. cMouse i.v. (bolus,
n=3) 1% DMSO and 20% Captisol in saline, pH = 4 ; p.o. (susꢀ
pension, n = 2): 2% DMSO and 40% PEG 400 in water, pH = 4.0.
dRat i.v. (60 minute infusion, n = 2): 1%DMSO and 20% Captiꢀ
sol in saline, pH = 4; oral (solution, n = 2): 1% DMSO and
20% PEG 400 in water, pH=4. eDog i.v. (60 minute infusion, n =
3): 1% DMSO and 20% Captisol in saline, pH = 6.5; p.o. (soluꢀ
tion, n = 3) 1%DMSO and 40% PEG 400 in water, pH = 4.9.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6. Marciniak, S. J.; GarciaꢀBonilla, L.; Hu, J.; Harding, H. P.; Ron, D.
Activationꢀdependent substrate recruitment by the eukaryotic translaꢀ
tion initiation factor 2 kinase PERK. J. Cell Biol. 2006, 172, 201ꢀ
209.
7. Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum
unfolded protein response. Nat. Rev. Mol. Cell Bio. 2007, 8, 519ꢀ529.
8. Blais, J.D; Addison, C.L.; Edge, R.; Falls, T.; Zhao, H.; Wary, K.;
Koumenis, C.; Harding, H.P.; Ron, D.; Holcik, M.; Bell, J.C. Perkꢀ
Dependent Translation Regulation Promotes Tumor cell Adaptation
and Angiogenesis in response to Hypoxic Stress. Mol. Cell. Biol.
2006, 26, 9517ꢀ9532.
9. Bi, M.; Naczki, C.; Koritzinsky, M.; Fels, D.; Blais, J.; Hu, N.;
Harding, H.; Novoa, I.; Varia, M.; Raleigh, J.; Scheuner, D.; Kaufꢀ
man, R.J.; Bell, J.; Ron, D.; Wouters, B.G.; Koumenis, C. ER stressꢀ
regulated translation increases tolerance to extreme hypoxia and proꢀ
motes tumor growth. EMBO J. 2005, 24, 3470ꢀ3481.
10. Blais, J.D.; Addison, C.L.; Edge, R.; Falls, T.; Zhao, H.; Wary,
K.; Koumenis, C.; Harding, H.P.; Ron, D.; Holcik, M.; Bell, J.C.
Perkꢀdependent translational regulation promotes tumor cell adaptaꢀ
tion and angiogenesis in response to hypoxic stress. Mol. Cell Biol.
2006, 26, 9517ꢀ9532.
11. Pereira, E.R.; Liao, N.; Neale, G.A.; Hendershot, L.M. Transcripꢀ
tional and PostꢀTranscriptional Regulation of Proangiogenic Factors
by the Unfolded Protein Response. PloS One 2010, 5, e12521.
12. Ghosh, R.; Lipson, K.L.; Sargent, K.E.; Mercurio, A.M.; Hunt,
J.S.; Ron, D.; Urano, F. Transcriptional Regulation of VEGFꢀA in the
Unfolded Protein Response Pathway. PLoS One 2010, 5, e9575.
13. Pereira, E.R.; Liao, N.; Neale, G.A.; Hendershot, L.M. Transcripꢀ
tional and PostꢀTranscriptional Regulation of Proangiogenic Factors
by the Unfolded Protein Response. PloS One 2010, 5, e12521.
14. Wang, Y.; Alam, G.N.; Ning, Y.; Visioli, F.; Dong, Z.; Nör, J.E.;
Polverini, P.J. The unfolded protein response induces the angiogenic
switch in human tumor cells through the PERK/ATF4 pathway. Can-
cer Res. 2012, 72, 5396ꢀ5406.
15. Axten, J. M.; Medina, J. R.; Feng, Y.; Shu, A.; Romeril, S.P.;
Grant, S.W.; Li, W.H.H.; Heerding, D.A.; Minthorn, E.; Mencken, T.;
Atkins, C.; Liu, Q.; Rabindran, S.; Kumar, R.; Hong, X.; Goetz, A.;
Stanley, T.; Taylor, J. D.; Sigethy, S.D.; Tomberlin, G.H.; Hassell,
A.M.; Kahler, K.M.; Shewchuk, L.M.; Gampe, R.T. Discovery of 7ꢀ
methylꢀ5ꢀ(1ꢀ{[3ꢀ(trifluoromethyl)phenyl]acetyl}ꢀ2,3ꢀdihydroꢀ1Hꢀ
indolꢀ5ꢀyl)ꢀ7Hꢀpyrrolo[2,3ꢀd]pyrimidinꢀ4ꢀamine (GSK2606414), a
potent and selective firstꢀinꢀclass inhibitor of protein kinase R (PKR)ꢀ
like endoplasmic reticulum kinase (PERK) J. Med. Chem. 2012,
55(16), 7193ꢀ7207.
In summary, our PERK inhibitor lead optimization was guided by
a strategy to decrease analog lipophilicity while maintaining the
potency and exquisite kinase selectivity of tool inhibitor 1. We
focused on heteroaryl acetamide analogs to minimize molecular
weight gain and designed a series of inhibitors with low to very
low in vivo rat blood clearance. Fluorination of the indoline 4ꢀ
postion was important for the recovery of potent biochemical and
cell potency, and the optimized 4ꢀfluorindoline analogs 6, 8, and
12 had favorable pharmacokinetics and lower levels of P450 inhiꢀ
bition in human liver microsomes. Expanded profiling estabꢀ
lished the superior kinase selectivity of 6 which was selected as a
preclinical development candidate.
ASSOCIATED CONTENT
Supporting Information Available: General Synthetic scheme
and experimental procedures for the synthesis of compounds 2ꢀ12,
DMPK and biological assay descriptions, crystallographic methꢀ
ods, and kinase selectivity profile information. This material is
AUTHOR INFORMATION
Corresponding Author
* (J.M.A.) Phone: 610ꢀ270ꢀ6368. Eꢀmail: Jefꢀ
REFERENCES
1. Kim, I.; Xu, W.; Reed, J.C. Cell death and endoplasmic reticulum
stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug
Disc. 2008, 7, 1013ꢀ1030.
2. Walter, P.; Ron, D. The Unfolded Protein Response: From Stress
Pathway to Homeostatic Regulation. Science 2011, 34, 1081ꢀ1086.
3. Shi, Y.; Vattem, K.M.; Sood, R.; An, J.; Liang, J.; Stramm, L.;
Wek, R.C. Identification and characterization of pancreatic eukaryotic
initiation factor 2 alphaꢀsubunit kinase, PEK, involved in translational
control. Mol. Cell Biol. 1998, 18, 7499ꢀ7509.
4. Harding, H.P.; Zhang, Y.; Ron, D. Protein translation and folding
are coupled by an endoplasmicꢀreticulumꢀresident kinase. Nature
1999, 397, 271ꢀ274.
5. Sood, R.; Porter, A.C.; Ma, K.; Quilliam, L.A.; Wek, R.C. Pancreꢀ
atic eukaryotic initiation factorꢀ2alpha kinase (PEK) homologues in
humans, Drosophila melanogaster and Caenorhabditis elegans that
mediate translational control in response to endoplasmic reticulum
stress. Biochem J. 2000, 346, 81ꢀ93 (Pt2).
16. Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.; Figueroa, D.J.; Moss,
K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; Choudhry, A.E.;
Alsaid, H.; Jucker, B.M.; Axten, J.M.; Kumar, R. Characterization of
ACS Paragon Plus Environment