L. Pellegatti et al. / Tetrahedron Letters 52 (2011) 5224–5228
5227
Table 3 (continued)
Entry Isocyanides
Products
Yieldsa
O
N
6
Benzyl isocyanide 3f
66%
Cl
N
N
N
N
N
5f
O
O
p-Methoxyphenyl isocyanide
3g
N
7
8
Traces
N
N
Cl
Cl
N
N
N
N
N
5g
O
HN
N
N
Figure 1. ORTEP diagram derived from the single-crystal X-ray analysis of
compound 5a.
Trimethylsilyl cyanide 3h
Traces
N
5d
Acknowledgment
a
Yields are given for isolated product.
We thank the Cancéropôle Grand Ouest, the Ligue Contre le
Cancer du Grand Ouest and the Region Centre (CrikMapAkt pro-
gram) for the financial support.
Next, we tried to introduce a chlorine atom on the scaffold,
which could allow coupling reactions at a later stage. Hence, 6-
chloro-1,2,4,5-tetrazin-3-amine 7 was employed as starting mate-
rial.16 The same behavior as pyrazolo derivative 6 was generally
observed with the different isocyanides (Table 3, Scheme 4). How-
ever, this amine did not lead to degradation with 2-pentyl isocya-
nide and compound 5c was isolated in 53% yield (Table 3, entry 3).
Decomposition was nevertheless noticed with 2-morpholinoethyl,
p-methoxyphenyl isocyanides and trimethylsilyl cyanide (Table 3,
entries 5, 7, and 8), as only traces of the desired compounds were
obtained.18
The structure of 5a was confirmed using X-ray diffraction. (
Fig. 1).17 Two independent molecules were found in the cell unit.
They only differ from the torsion angle between the cyclohexyl
ring and the hetero-polycyclic moiety, that is, molecule I: C(12)–
N(11)–C(20)–C(21) = ꢀ52.6(4)°, molecule II: C(62)–N(61)–C(70)–
C(71) = ꢀ52.6(4)°. The polycyclic skeleton adopts an almost planar
conformation, with, for example, dihedral angles C(12)–N(11)–
C(8)–N(6) = ꢀ171.8(3)°, C(14)–C(9)–N(10)–C(5) = ꢀ177.5(3)°. The
bond lengths C(8)–N(11), C(8)–C(9) and C(8)–N(6) and the dihedral
angle N(6)–C(8)–N(11)–C(20) = 13.4(5)°, illustrate the sp2 charac-
ter of C(8) and N(11), respectively.
References and notes
1. (a) Zhu, J.; Bienaymé, H. Multicomponent reactions; Wiley: Ling, 2005; (b)
Sunderhaus, J. D.; Martin, S. F. Chem. Eur. J. 2009, 15, 1300–1308; (c) Hulme, C.;
Gore, V. Curr. Med. Chem. 2002, 10, 51–80.
2. (a) Sadjadi, S.; Heravi, M. M. Tetrahedron 2011, 67, 2707–2752; (b) Banfi, L.;
Riva, R. Org. Reactions 2005, 65, 1–140.
3. (a) Ugi, I. Angew. Chem., Int. Ed. Engl 1962, 1, 8–21; (b) Dömling, A. Chem. Rev.
2006, 106, 17–89.
4. (a) Rhee, H. K.; Lim, S. Y.; Jung, M. J.; Kwon, Y.; Kim, M. H.; Park Choo, H. Y.
Bioorg. Med. Chem. 2009, 17, 7537–7541; (b) Kercher, T.; Rao, C.; Bencsik, J. R.;
Josey, J. A. J. Comb. Chem. 2007, 9, 1177–1187; (c) Meng, T.; Zhang, Z.; Hu, D.;
Lin, L.; Ding, J.; Wang, X.; Shen, J. J. Comb. Chem. 2007, 9, 739–741; (d) Groebke,
K.; Weber, L.; Mehlin, F. Synlett 1998, 661–663; (e) Blackburn, C.; Guan, B.;
Fleming, P.; Shiosaki, K.; Tsai, S. Tetrahedron Lett. 1998, 39, 3635–3638; (f)
Huffman, J. J. Heterocycl. Chem. 1987, 24, 549–553.
5. Katrizky, A. R.; Xu, Y. J.; Tu, H. J. J. Org. Chem. 2003, 68, 4935–4937.
6. Harrison, T. S.; Keating, G. M. C. N. S. Drugs 2005, 19, 65–89.
7. Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharma.
1990, 46, 61–72.
8. (a) Lacerda, R. B.; De Lima, C. K.; Da Silva, L. L.; Romeiro, N. C.; Miranda, A. L.;
Barreiro, E. J.; Fraga, C. A. Bioorg. Med. Chem. 2009, 17, 74–84; (b) Humphries, A.
C.; Gancia, E.; Gilligan, M. T.; Goodacre, S.; Hallett, D.; Merchant, K. J.; Thomas,
S. R. Bioorg. Med. Chem. Lett. 2006, 16, 1518–1522; (c) Byth, K. F.; Culshaw, J. D.;
Green, S.; Oakes, S.; Thomas, A. P. Bioorg. Med. Chem. Lett. 2004, 14, 2245–2248;
(d) Starrett, J. E.; Montzka, T. A.; Crosswell, A. R.; Cavanagh, R. L. J. Med. Chem.
1989, 32, 2204–2210; (e) Davey, D.; Erhardt, P. W.; Lumma, W.; Wiggins, J.;
Sullivan, M.; Pang, D.; Cantor, E. J. Med. Chem. 1987, 30, 1337–1342; (f) Teulade,
J. C.; Grassy, G.; Girard, J. P.; Chapat, J. P.; Simeon de Buochberg, M. Eur. J. Med.
Chem. 1978, 13, 271–276.
In this Letter, we have shown that the modified Ugi multicom-
ponent reaction can be generalized to the use of amino[1,2,4,
5]tetrazines. The desired [1,2,4,5]tetrazino [60,10:2,3]imidazo[4,5-
c]isoquinolin-5-ones were generally isolated in good to excellent
yield. Studies on the functionalization of the 3-chloro-imi-
dazo[1,2-b][1,2,4,5]tetrazine derivatives are currently in progress
and results will be published in due course.
9. (a) Dömling, A. Org. Chem. Highlights 2005. April 5; (b) Dömling, A.; Ugi, I.
Angew. Chem., Int. Ed. 2000, 39, 3168–3210.
10. (a) Ngouansavanh, T.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 5775–5778; (b)
Giovenzana, G. B.; Tron, G. C.; Di Paola, S.; Menegotto, I. G.; Pirali, T. Angew.
Chem., Int. Ed. 2006, 45, 1099–1102; (c) El Kaïm, L.; Grimaud, L.; Oble, J. Angew.
O
O
R
Cl
N
N
N
N
HO
O
N
N
Cl
R
N C 3a-h
N
N
NH2
Toluene, MW
100 °C, 10 min
+
N
N
7
2
5a-h
Scheme 4. Preparation of compounds 5.