In Identification and Analysis of Organic Pollutants in Air; Keith
L. H., Ed.; Butterworth: London, 1984; pp 371-387.
(2) Harper, M. J. Chromatogr. A 2000, 885, 129-151.
(3) Stro¨ mvalll, A.-M.; Petersson, G. J. Chromatogr. 1992, 589, 385-
389.
(4) Calogirou A.; Larsen B. R.; Kotzias D. Atmos. Environ. 1999, 33,
1423-1439.
(5) Grosjean, E.; Grosjean, D. J. Atmos. Chem. 1999, 32, 205-232.
(6) Neher, M. B.; Jones, P. W. Anal. Chem. 1977, 49, 512-513.
(7) Pellizzari, E. D.; Demian, B.; Krost, K. J. Anal. Chem. 1984, 56,
793-798.
(8) Walling, J. F.; Bumgarner, J. E.; Driscol, D. J.; Morris, C. M.;
Riley, A. E.; Wright, L. H. Atmos. Environ. 1986, 20, 51-57.
(9) Cao, X.; Hewitt, C. N. Environ. Sci. Technol. 1994, 28, 757-762.
(10) Clausen, P. A.; Wolkoff, P. Atmos. Environ. 1997, 31, 715-725.
(11) Wolkoff, P.; Clausen, P. A.; Wilkins, C. K.; Nielsen, G. D. Indoor
Air 2000, 10, 82-91.
(12) Weschler, C. J. Indoor Air 2000, 10, 269-288.
(13) Ruggli, P.; Schmidlin, J. Helv. Chim. Acta 1944, 27, 499-502.
(14) Wolkoff, P. Atmos. Environ. 1998, 32, 2659-2668.
(15) Effkemann, S.; Brødsgaard, S.; Mortensen, P.; Linde, S.-A.; Karst,
U. J. Chromatogr. 1999, 855, 551-561.
(16) Dohan, J. M.; Masschelein, W. J. Ozone: Sci., Eng. 1987, 9, 315-
334.
(17) Nozie´re, B.; Barnes, I.; Becker, K.-H. J. Geophys. Res. 1999, 104-
(D19), 23,645-23,656.
(18) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.;
Molina, M. J. Chemical kinetics and Photochemical data for use
in stratospheric modelling; Evaluation No. 12; Jet Propulsion
Laboratory: Pasadena, CA, January 15, 1997.
(19) Weschler, C. J.; Shields, H. Environ. Sci. Technol. 1994, 28, 2120.
(20) Weschler, C. J.; Shields, H. C. Environ. Sci. Technol. 1997, 31,
3719-3722.
(21) Lee, J. H.; Leahy, D. F.; Tang, I. N.; Newman, L. J. Geophys. Res.
1993, 98, D2, 2911-2915.
(22) Jackson, A. V.; Hewitt, C. N. Atmos. Environ. 1996, 30, 819-830.
(23) Riedel, K.; Weller, R.; Schrems, O.; Ko¨ nig-Langlo, G. Atmos.
Environ. 2000, 34, 5225-5234.
(24) Sauer, F.; Scha¨fer, S.; Neeb, P.; Horie, O.; Moortgart, G. K. Atmos.
Environ. 1999, 33, 229-241.
(25) Finlayson-Pitts, B.J; Pitts, J. N. Chemistry of the Upper and Lower
Atmosphere; Academic Press: San Diego, 2000.
(26) Li, T.-S.; Turpin. B. J.; Shields, H. C.; Weschler, C. J. Environ. Sci.
Technol. 2002, 36, in press.
present in minor amounts in stack gases. Therefore, it is
reasonable to assume that NO2 is responsible for the DPQ
production. Other degradation products may arise from
degradation of the polymer or other molecules formed during
depolymerization. Roberts et al. (1) and Pellizari et al. (7)
have observed a decreasing yield in benzaldehyde, phenol,
and acetophenone after repeated O3 exposure of Tenax GC.
It was hypothesized that the adsorbent surface was depleted
in readily degradable oligomers. However, another explana-
tion could be degradable impurities not removed by thermal
cleaning of the Tenax.
The observed degradation products are not necessarily
primary in nature but may arise from thermal breakdown of
unknown degradation products. This could be studied by
solvent extraction of Tenax exposed to O3 followed by NMR,
FTIR, or another cold analytical technique, as described by
Neher and Jones (6). Clausen and Wolkoff (10) found that
DPQ and DPHQ were not thermally degraded to other Tenax
degradation products. O3 could add to the double bonds of
DPQ, but this reaction should be much slower than its
reaction with terpenes, since the carbonyl groups are electron
withdrawing (31). In a series of experiments, crystalline DPQ
and DPHQ was exposed to high concentrations of O3 for 1
h and dissolved in methanol. TD-GC-MS analysis revealed
none of the observed degradation products (10). However,
oxidation of DPQ on the Tenax surface cannot be excluded.
It appears that several mechanisms are involved in the
breakdown of Tenax. It is interesting that the NO2 and OH
radicals behave almost identical with respect to degradation
products but not NO. If this is general for reactive radicals,
the formation of the 11 specific O3-Tenax products suggests
degradation routes other than simple radical mechanisms.
Degradation of adsorbed terpenes on Tenax in the
presence of O3 (4) and NO2 (32) may also be explained by
secondary oxidation by DPQ formed on the Tenax surface,
possibly during thermal desorption. This is particularly
relevant in the case of NO2, because its reaction rate with
alkenes (in the gas phase) are orders of magnitude lower
than those of O3 (33).
The present study warrants an evaluation of O3-Tenax
degradation products as a method for quantitative NO2 and
O3 analysis. Also, the influence of residual mixtures of O3 and
NO2 needs to be studied.
(27) Neeb, P.; Sauer, F.; Horie, O.; Moortgart, G. K. Atmos. Environ.
1997, 31, 10, 1417-1423.
(28) Tobias, H. J.; Ziemann, P. J. Environ. Sci. Technol. 2000, 34,
2105-2115.
(29) Andresen, B. D.; Biemann, K. J. Label. Comps. Radiopharmaceut.
1978, 15, 479-488.
(30) Clausen, P. A. Unpublished FT-IR and MS data, 2001.
(31) Paquette, L. A. Encyclopedia of reagents for organic chemistry
synthesis; John Wiley & Sons Ltd.: England, 1995; Vol. 6, pp
3837-3843.
(32) Pommer, L.; Fick, J.; Andersson, B.; Nilsson, C. Atmos. Environ.
2002, 36, 1443-1452.
(33) Atkinson, R.; Aschmann, A. M.; Winer, A. M.; Pitts, J. N. Int. J.
Chem. Kinet. 1984, 16, 697-706.
Acknowledgments
The study was partially supported by Center for Indoor Air
Research (Linthicum, MD). We thank Dr. S. Hammerum,
Department of Chemistry, University of Copenhagen for a
sample of 2,4-diphenyl-4-cyclopentene-1,3-dione. We are
grateful for the excellent work by Ms. Vivi Hansen and Mr.
Kjeld Larsen.
Literature Cited
(1) Roberts, J. M.; Fehsenfeld, F. C.; Albritton, D. L.; Sievers, R. E.
Sampling and analysis of monoterpene hydrocarbons in the
atmosphere with Tenax gas chromatographic porous polymer.
Received for review March 27, 2002. Revised manuscript
received July 12, 2002. Accepted July 17, 2002.
ES025680F
9
4 1 2 6 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 36, NO. 19, 2002