Journal of the American Chemical Society
COMMUNICATION
Scheme 2. 9,10-Dicyanoanthracene-Sensitized Isomeriza-
tion of 4 to 6 and Proposed Mechanism of This Transfor-
mation via an Electron-Transfer Reaction
Culture of Japan, JSPS Research Fellowship for Young Scientists
(Y.I.). We are grateful to Prof. Hiroshi Ikeda (Osaka Prefecture
University) for helpful discussions on the photo-electron-transfer
reaction.
’ REFERENCES
(1) Parent cyclobutadiene: (a) Masamune, S.; Souto-Bachiller, F.
A.; Machiguchi, T.; Bertie, J. E. J. Am. Chem. Soc. 1978, 100, 4889.
(b) Whitman, D. W.; Carpenter, B. K. J. Am. Chem. Soc. 1980, 102, 4272.
Crystallographically characterized cyclobutadienes: (c) Irngartinger, H.;
Rodewald, H. Angew. Chem., Int. Ed. Engl. 1974, 13, 740. (d) Delbaere,
L. T. J.; James, M. N. G.; Nakamura, N.; Masamune, S. J. Am. Chem. Soc.
1975, 97, 1973. (e) Irngartinger, H.; Riegler, N.; Malsch, K.-D.;
Schneider, K.-A.; Maier, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 211.
(f) Ermer, O.; Heilbronner, E. Angew. Chem., Int. Ed. Engl. 1983, 22, 402.
(g) Irngartinger, H.; Nixdorf, M. Angew. Chem., Int. Ed. Engl. 1983,
22, 403. (h) Sekiguchi, A.; Tanaka, M.; Matsuo, T.; Watanabe, H. Angew.
Chem., Int. Ed. Engl. 2001, 40, 1675. Reviews on cyclobutadienes:
(i) Maier, G. Angew. Chem., Int. Ed. Engl. 1974, 13, 425. (j) Bally, T.;
Masamune, S. Tetrahedron 1980, 36, 343. (k) Matsuo, T.; Sekiguchi, A.
Bull. Chem. Soc. Jpn. 2004, 77, 211. (l) Sekiguchi, A.; Matsuo, T. Synlett
2006, 2683. Theoretical studies: (m) Balci, M.; McKee, M. L.; Schleyer,
P. v. R. J. Phys. Chem. A. 2000, 104, 1246.
(2) Reviews on tetrahedranes: (a) Maier, G. Angew. Chem., Int. Ed.
Engl. 1988, 27, 309. (b) Maier, G. Pure Appl. Chem. 1991, 63, 275.
(c) Lee, V. Ya.; Sekiguchi, A. In Strained Hydrocarbons; Dodziuk, H., Ed.;
Wiley-VCH: Weinheim, 2009; Chapter 2.
(3) Nemirowski, A.; Reisenauer, H. P.; Schreiner, P. R. Chem.—Eur.
J. 2006, 12, 7411.
(4) Maier, G.; Pfriem, S.; Sch€afer, U.; Matusch, R. Angew. Chem., Int.
Ed. Engl. 1978, 17, 520.
(5) Maier, G.; Nuedert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.;
Tanaka, M.; Matsuo, T. J. Am. Chem. Soc. 2002, 124, 13819.
(6) Nakamoto, M.; Inagaki, Y.; Ochiai, T.; Tanaka, M.; Sekiguchi, A.
Heteroatom Chem. 2011, 22, 412.
(7) (a) Sekiguchi, A.; Tanaka, M. J. Am. Chem. Soc. 2003, 125, 12684.
(b) Tanaka, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2005, 44, 5821.
(8) Ochiai, T.; Nakamoto, M.; Inagaki, Y.; Sekiguchi, A. J. Am. Chem.
Soc. 2011, 133, 11504.
irradiated (λ > 420 nm) at 10 °C, and 4 was cleanly converted to
6 (93% yield) (Scheme 2). On the other hand, under the same
photochemical conditions in the absence of DCA, no 6 was
formed. The oxidation potential (EO1/x2) of 4 (+0.700 V vs Fe/Fe+,
+1.08 V vs SCE in acetonitrile) is low enough to promote
oxidation of 4 with the excited singlet DCA in acetonitrile by
electron transfer, as suggested by the calculated free energy
change (ΔGET = ꢀ20.4 kcal/mol).16,17 These results strongly
suggest a mechanism that involves initial generation of the cation
radical 4+•, which rapidly isomerizes to the cation radical 6+•, as
depicted in Scheme 2. This cation radical undergoes back-
electron-transfer to the DCA, which yields neutral 6.18 According
to theoretical calculations at the B3LYP/6-31G(d) level, the
cation radical 6+• is 11.8 kcal/mol more stable than the cation
radical 4+•, which further confirms this mechanism.
Although the mechanism of the photoinduced valence iso-
merization of 4 and 5 to 6 and 7, respectively, shown in Scheme 1,
is not certain, we can consider the photoinduced intramolecular
electron transfer from the tetrahedrane moiety to the perfluor-
obenzene moiety as the general pathway for this type of trans-
formation. Solvent effects on the rate of photoisomerization of 4
to 6 also support this possibility (see the Supporting Infor-
mation).
(9) Nakamoto, M.; Inagaki, Y.; Nishina, M.; Sekiguchi, A. J. Am.
Chem. Soc. 2009, 131, 3172.
(10) For the experimental procedures, spectral data for 6 and 7,
solvent effects on the rate of photoisomerization of 4 to 6, and crystal
data for 6, see the Supporting Information.
(11) TD-DFT calculations at the B3LYP/6-31G(d) level were
carried out for the assignment of the absorptions. A weak absorption
at 462 nm can be assigned to a HOMO (π of cyclobutadiene)ꢀLUMO
(π* of cyclobutadiene) transition, and the absorption at 311 nm can be
assigned to a HOMO (π of cyclobutadiene)ꢀLUMO+1 (π* of perfluo-
robenzene) transition.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectral data for 6 and 7, solvent effects on the rate of photo-
isomerization of 4 to 6, and tables of crystallographic data,
including atomic positional and thermal parameters, and CIF
files for 6. This material is available free of charge via the Internet
(12) For theoretical calculations on the automerization reaction of
cyclobutadiene, see:Eckert-Maksiꢀc, M.; Vazdar, M.; Barbatti, M.; Lischka,
H.; Maksiꢀc, Z. B. J. Chem. Phys. 2006, 125, 064310.
(13) (a) Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.;
Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317. Review on
NICS calculation:(b) Chen, Z.; Wannere, C. S.; Corminboeuf, C.;
Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842.
(14) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen,
A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. 2 1987, S1–S19.
(15) For electronic spectra of DCA, see: Olea, A. F.; Worrall, D. R.;
Wilkinson, F.; Williams, S. L.; Abdel-Shafi, A. A. Phys. Chem. Chem. Phys.
2002, 4, 161.
’ AUTHOR INFORMATION
Corresponding Author
(16) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
(17) In the intermolecular electron-transfer process, the change in
Gibbs free energy, ΔG, can be estimated by the following eq:
’ ACKNOWLEDGMENT
This work was financially supported by Grants-in-Aid for Scien-
tific Research program (Nos. 19105001, 23108701, 23550042,
23655027) from the Ministry of Education, Science, Sports, and
Ox
1=2
Red
1=2
ΔGET ¼ ðE ꢀ E Þ ꢀ E0-0 ꢀ ωp
ð1Þ
16438
dx.doi.org/10.1021/ja208354x |J. Am. Chem. Soc. 2011, 133, 16436–16439