Inorganic Chemistry
ARTICLE
With the softer Cu(I) cation, triazole coordination was less
affected by its electron-donating capacities and yielded stable
complexes provided, however, the π-acceptor CO ligand was
present. Comparison with the analogous tris(pyridyl)- and tris-
(imidazolyl)-calixarene ligands shows that the tris(triazolyl)
cores have mixed coordinating behavior: with Zn(II), depending
on the substituent present on the triazole cores, it resembles
either the pyridyl (less electron-rich) systems or the imidazolyl
(more electron-rich) system. With Cu(I), whatever the substitu-
tion pattern is, all triazolyl systems resemble more the imidazolyl
complex (CO coordination) except for the redox behavior in the
presence of CH3CN. The study with Zn(II) also highlighted that
an important difference between these ligands lies in the different
steric hindrance next to the donor atom: the triazole has a
nitrogen atom in place of CH for the other two ligands, which
decreases the steric hindrance around the metal center and opens
more widely a fifth coordination site. Interestingly, this was
shown to have an important impact on both the kinetics and
the thermodynamics of the systems. Finally, for electronic as well
as for steric reasons, the substitution pattern of the triazoles
connected at the small rim of the calixarene also changes the
hostÀguest properties of the funnel complexes. This highlights
an efficient transmission of information between one edge of the
funnel (the coordination core) and the other (the cavity). Hence,
the ease of preparation and the versatility of ligands based on 1,4-
disubstituted-1,2,3-triazoles whose steric and electronic proper-
ties can be tuned at will make them very promising candidates for
further applications in coordination chemistry related to biology,
catalysis, and materials chemistry.
Org. Lett. 2011, DOI: 10.1021/ol102914t. (g) Crowley, J. D.; Gavey, E. L.
Dalton Trans. 2010, 39, 4035–4037. (h) Gower, M. L.; Gavey, E. L. Dalton
Trans. 2010, 39, 2371–2378. (i) Joly, J. P.; Beley, M.; Selmeczi, K.; Wenger,
E. Inorg. Chem. Commun. 2009, 12, 382–384. (j) Maeda, C.; Yamaguchi,
S.; Ikeda, C.; Shinokubo, H.; Osuka, A. Org. Lett. 2008, 10, 549–552. (k)
Mullen, K. M.; Gunter, M. J. J. Org. Chem. 2008, 73, 3336–3350. (l)
Ornelas, C.; Aranzaes, J. R.; Salmon, L.; Astruc, D. Chem.—Eur. J.
2008, 14, 50–64. (m) Fletcher, T.; Bumgarner, B. J.; Engels, N. D.;
Skoglund, D. A. Organometallics 2008, 27, 5430–5433. (n) Meudtner,
R. M.; Ostermeier, M.; Goddard, R.; Limberg, C.; Hecht, S. Chem.—Eur. J.
2007, 13, 9834–9840. (o) Ostermeier, M.; Berlin, M.-A.; Meudtner, R. M.;
Demeshko, S.; Meyer, F.; Limberg, C.; Hecht, S. Chem.—Eur. J. 2010,
13, 10202–10213.
(4) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. Rev. 1996, 96,
2239–2314.
(5) (a) Malmstr€om, B. G.; Leckner, J. Curr. Opin. Chem. Biol. 1998,
2, 286–292. (b) Boal, A. K.; Rosenzweig, A. C. Chem. Rev. 2009, 109,
4760–4779. (c) Kodama, H.; Fujisawa, C. Metallomics 2009, 1, 42–52.
(d) Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Med. Res.
Rev. 2010, 30, 708–749. (e) Donnelly, P. S.; Xiao, Z.; Wedd, A. G. Curr.
Opin. Chem. Biol. 2007, 11, 128–133.
(6) Colasson, B.; Save, M.; Milko, P.; Roithovꢀa, J.; Schr€oder, D.;
Reinaud, O. Org. Lett. 2007, 9, 4987–4990.
(7) Colasson, B.; Le Poul, N.; Le Mest, Y.; Reinaud, O. J. Am. Chem.
Soc. 2010, 132, 4393–4398.
(8) With zinc: (a) Sꢀenꢁeque, O.; Rager, M.-N.; Giorgi, M.; Reinaud,
O. J. Am. Chem. Soc. 2000, 122, 6183–6189. (b) Sꢀenꢁeque, O.; Rager,
M.-N.; Giorgi, M.; Reinaud, O. J. Am. Chem. Soc. 2001, 123, 8442–8443.
(c) Sꢀenꢁeque, O.; Giorgi, M.; Reinaud, O. Chem. Commun. 2001, 984–985.
(d) Sꢀenꢁeque, O.; Rondelez, Y.; Le Clainche, L.; Inisan, C.; Rager, M.-N.;
Giorgi, M.; Reinaud, O. Eur. J. Inorg. Chem. 2001, 2597–2604. (e) Sꢀenꢁeque,
O.; Giorgi, M.; Reinaud, O. Supramol. Chem. 2003, 15, 573–580.
(9) With copper: (a) Rondelez, Y.; Sꢀenꢁeque, O.; Rager, M.-N.;
Duprat, A.; Reinaud, O. Chem.—Eur. J. 2000, 6, 4218–4226. (b) Le
Clainche, L.; Giorgi, M.; Reinaud, O. Inorg. Chem. 2000, 39, 3436–3437.
(c) Le Clainche, L.; Rondelez, Y.; Sꢀenꢁeque, O.; Blanchard, S.; Campion,
M.; Giorgi, M.; Duprat, A. F.; Le Mest, Y.; Reinaud, O. C. R. Acad. Sci.,
Ser. IIc 2000, 3, 811–819.
’ ASSOCIATED CONTENT
S
Supporting Information. General procedures, synthesis,
b
and characterization of the ligands and complexes; spectroscopic
data; and electrochemical experiments. This material is available
(10) Coquiꢁere, D.; Le Gac, S.; Darbost, U.; Sꢀenꢁeque, O.; Jabin, I.;
Reinaud, O. Org. Biomol. Chem. 2009, 7, 2485–2500.
(11) Rebilly, J.-N.; Reinaud, O. In Supramolecular Chemistry: from
Molecules to Nanomaterials (SMC174); Wiley: New York, 2011, in press.
(12) (a) Blanchard, S.; Le Clainche, L.; Rager, M.-N.; Chansou, B.;
Tuchagues, J. P.; Duprat, A.; Le Mest, Y.; Reinaud, O. Angew. Chem., Int.
Ed. 1998, 37, 2732–2735. (b) Rondelez, Y.; Rager, M.-N.; Duprat, A.;
Reinaud, O. J. Am. Chem. Soc. 2002, 124, 1334–1340.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: olivia.reinaud@parisdescartes.fr.
(13) Unpublished work.
’ ACKNOWLEDGMENT
(14) Mꢀenand, M.; Jabin, I. Org. Lett. 2009, 11, 673–676.
(15) van Duynhoven, J. P. M.; Janssen, R. G.; Verboom, W.; Franken,
S. M.; Casnati, A.; Pochini, A.; Ungaro, R.; de Mendoza, J.; Nieto, P. M.;
Prados, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 1994, 116, 5814–5822.
(16) Sꢀenꢁeque, O.; Campion, M.; Giorgi, M.; Le Mest, Y.; Reinaud,
O. Eur. J. Inorg. Chem. 2004, 43, 1817–1826.
This research was supported by CNRS and Agence National pour
la Recherche [Cavity-zyme(Cu) Project ANR-2010-BLAN-7141].
’ REFERENCES
(17) (a) Le Poul, N.; Campion, M.; Izzet, G.; Douziech, B.; Reinaud,
O.; Le Mest, Y. J. Am. Chem. Soc. 2005, 127, 5280–5281. (b) Le Poul, N.;
Campion, M.; Douziech, B.; Rondelez, Y.; Le Clainche, L.; Reinaud, O.;
Le Mest, Y. J. Am. Chem. Soc. 2007, 129, 8801–8810.
(1) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057–3062. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
(2) (a) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003,
8, 1128–1136. (b) Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico,
P. L.; Sorba, G.; Genazzani, A. A. Med. Res. Rev. 2008, 28, 278–308.
(3) (a) Suijkerbuijk, B. M. J. M.; Aerts, B. N. H.; Dijkstra, H. P.; Lutz,
M.; Spek, A. L.; van Koten, G.; Klein Gebbink, R. J. M. Dalton Trans.
2007, 1273–1276. (b) Li, Y.; Huffman, J. C.; Flood, A. H. Chem.
Commun. 2007, 2692–2694. (c) Mindt, T. L.; Struthers, H.; Brans, L.;
Anguelov, T.; Scheinsberg, C.; Maes, V.; Tourwꢀe, D.; Schibli, R. J. Am.
Chem. Soc. 2006, 128, 15096–15097. (d) Happ, B.; Friebe, C.; Winter,
A.; Hager, M. D.; Hoogenboom, R.; Schubert, U. S. Chem. Asian J. 2009,
4, 154–163. (e) Fleischel, O.; Wu, N.; Petitjean, A. Chem. Commun.
2010, 46, 8454–8456. (f) Ni, X.-L;. Wang, S.;Zeng, X.;Tao, Z.;Yamato, T.
10993
dx.doi.org/10.1021/ic201540x |Inorg. Chem. 2011, 50, 10985–10993