1900
W.-S. Li et al. / Inorganic Chemistry Communications 14 (2011) 1898–1900
[12] J.L. Major, R.M. Boiteau, T.J. Meade, Mechanisms of ZnII-activated magnetic reso-
nance imaging agents, Inorganic Chemistry 47 (2008) 10788–10795.
[13] J.L. Major, G. Parigi, C. Luchinat, T.J. Meade, The synthesis and in vitro testing of a
zinc-activated MRI contrast agent, Proceedings of the National Academy of Sciences
of the United States of America 104 (2007) 13881–13886.
[14] W.H. Li, S.E. Fraser, T.J. Meade, A calcium-sensitive magnetic resonance imaging
contrast agent, Journal of the American Chemical Society 121 (1999) 1413–1414.
[15] K.N. Raymond, V.C. Pierre, Next generation, high relaxivity gadolinium MRI
agents, Bioconjugate Chemistry 16 (2005) 3–8.
[16] E.J. Werner, A. Datta, C.J. Jocher, K.N. Raymond, High-Relaxivity MRI contrast
agents: where coordination chemistry meets medical imaging, Angewandte Chemie,
International Edition 47 (2008) 8568–8580.
[17] L.M. Urbanczyk-Pearson, F.J. Femia, J. Smith, G. Parigi, J.A. Duimstra, A.L. Eckermann,
C. Luchinat, T.J. Meade, Mechanistic investigation of β-galactosidase-activated MR
contrast agents, Inorganic Chemistry 47 (2008) 56–68.
[18] E.L. Que, D.W. Domaille, C.J. Chang, Metals in neurobiology: probing their chemistry
and biology with molecular imaging, Chemical Reviews 108 (2008) 1517–1549.
[19] Y. Song, E.K. Kohlmeir, T.J. Meade, Synthesis of multimeric MR contrast agents for
cellular imaging, Journal of the American Chemical Society 130 (2008) 6662–6663.
[20] J.B. Livramento, E'. To'th, A. Sour, A. Borel, A.E. Merbach, R. Ruloff, High relaxivity
confined to a small molecular space: a metallostar-based, potential MRI contrast
agent, Angewandte Chemie, International Edition 44 (2005) 1480–1484.
[21] T.N. Parac-Vogt, L.V. Elst, K. Kimpe, S. Laurent, C. Burte'a, F. Chen, R.V. Deun, Y. Ni, R.N.
Muller, K. Binnemans, Pharmacokinetic and in vivo evaluation of a self-assembled
gadolinium(III)–iron(II) contrast agent with high relaxivity, Contrast Media &
Molecular Imaging 1 (2006) 267–278.
Fig. 2. T1-weighted phantom MR images for Gd2Fe complex. H2O (A); 1 μM Gd2Fe complex
(B); 10 μM Gd2Fe complex (C); 100 μM Gd2Fe complex (D); and 100 μM Gd-DTPA complex
(E).
[22] J. Paris, C. Gameiro, V. Humblet, P.K. Mohapatra, V. Jacques, J.F. Desreux, Auto-
assembling of ditopic macrocyclic lanthanide chelates with transition-metal
ions. rigid multimetallic high relaxivity contrast agents for magnetic resonance
imaging, Inorganic Chemistry 45 (2006) 5092–5102.
Appendix A. Supplementary material
[23] R. Ruloff, G. van Koten, A.E. Merbach, Novel heteroditopic chelate for self-assembled
gadolinium(III) complex with high relaxivity, Chemical Communications (2004)
842–843.
Supplementary data to this article can be found online at doi:10.
1016/j.inoche.2011.09.006.
[24] S. Aime, M. Botta, M. Fasano, E. Terreno, Paramagnetic GdIII-FeIII heterobimetallic
complexes of DTPA-bis-salicylamide, Spectrochimica Acta Part A: Molecular
Spectroscopy 49 (1993) 1315–1322.
References
[25] T.N. Parac-Vogt, K. Kimpe, K. Binnemans, Heterobimetallic gadolinium(III)–iron
(III) complex of DTPA-bis(3-hydroxytyramide), Journal of Alloys and Compounds
374 (2004) 325–329.
[1] P.A. Rinck, Magnetic Resonance Imaging, 4th ed., Blackwell Science, Berlin, 2001,
p. 149.
[26] E.L. Que, C.J. Chang, Responsive magnetic resonance imaging contrast agents as
chemical sensors for metals in biology and medicine, Chemical Society Reviews
39 (2010) 51–60.
[27] W.S. Li, Z.F. Li, F.Y. Jing, Y.F. Deng, L. Wei, P.Q. Liao, X.G. Yang, X.J. Li, F.K. Pei, X.X.
Wang, H. Lei, Synthesis and evaluation of Gd-DTPA-labeled arabinogalactans as
potential MRI contrast agents, Carbohydrate Research 343 (2008) 685–694.
[28] Z.F. Li, W.S. Li, X.J. Li, F.K. Pei, X.X. Wang, H. Lei, Mn(II)-monosubstituted polyox-
ometalates as candidates for contrast agents in magnetic resonance imaging,
Journal of Inorganic Biochemistry 101 (2007) 1036–1042.
[2] R.B. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for
NMR imaging: theory and design, Chemical Reviews 87 (1987) 901–927.
[3] S. Aime, S.G. Crich, E. Gianolio, G.B. Giovenzana, L. Tei, E. Terreno, High sensitivity
lanthanide(III) based probes for MR-medical imaging, Coordination Chemistry
Reviews 250 (2006) 1562–1579.
[4] P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast
agents, Chemical Society Reviews 35 (2006) 512–523.
[5] J.L. Major, T.J. Meade, Bioresponsive, cell-penetrating, and multimeric MR contrast
agents, Accounts of Chemical Research 42 (2009) 893–903.
[29] W.S. Li, J. Luo, Z.N. Chen, A gadolinium(III) complex with 8-amidequinoline based
ligand as copper(II) ion responsive contrast agent, Dalton Transactions 40 (2011)
484–488.
[6] L.M. De Leon-Rodriguez, A.J.M. Lubag, C.R. Malloy, G.V. Martinez, R.J. Gillies, A.D.
Sherry, Responsive MRI agents for sensing metabolism in vivo, Accounts of Chemical
Research 42 (2009) 948–957.
[30] D.E. Prasuhn, R.M. Yeh, A. Obenaus, M. Manchester, M.G. Finn, Viral MRI contrast
agents: coordination of Gd by native virions and attachment of Gd complexes by
azide–alkyne cycloaddition, Chemical Communications (2007) 1269–1271.
[31] A. Winter, D.A.M. Egbe, U.S. Schubert, Rigid π-conjugated mono-, bis-, and tris
(2,2′:6′,2″-terpyridines), Organic Letters 9 (2007) 2345–2348.
[7] M.M. Ali, G. Liu, T. Shah, C.A. Flask, M.D. Pagel, Using two chemical exchange satura-
tion transfer magnetic resonance imaging contrast agents for molecular imaging
studies, Accounts of Chemical Research 42 (2009) 915–924.
[8] E.L. Que, C.J. Chang, A Smart magnetic resonance contrast agent for selective copper
sensing, Journal of the American Chemical Society 128 (2006) 15942–15943.
[9] L. Frullano, T.J. Meade, Multimodal MRI contrast agents, Journal of Biological Inorganic
Chemistry 12 (2007) 939–949.
[32] X.Y. Li, X.J. Li, S.R. Zhang, F.K. Pei, NMR relaxation studies of GdDTPA in human
serum albumin solution, Polyhedron 18 (1999) 695–697.
[33] J. Reuben, Gadolinium(III) as a paramagnetic probe for proton relaxation studies
of biological macromolecules. Binding to bovine serum albumin, Biochemistry 10
(1971) 2834–2838.
[10] T.J. Meade, S. Aime, Chemistry of molecular imaging, Accounts of Chemical Research
42 (2009) 821.
[11] S. Aime, D.D. Castelli, S.G. Crich, E. Gianolio, E. Terreno, Pushing the sensitivity envelope
of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular
imaging applications, Accounts of Chemical Research 42 (2009) 822–931.