ORGANIC
LETTERS
2011
Vol. 13, No. 22
6122–6125
Multifunctionalized 3-Hydroxypyrroles in
a Three-Step, One-Pot Cascade Process
from Methyl 3-TBSO-2-diazo-3-butenoate
and Nitrones
Xinfang Xu, Maxim O. Ratnikov, Peter Y. Zavalij, and Michael P. Doyle*
Department of Chemistry and Biochemistry, University of Maryland, College Park,
Maryland 20742, United States
Received September 29, 2011
ABSTRACT
The synthesis of N-aryl-2-carboxyl-3-hydroxy-5-arylpyrroles has been achieved in high yield by the combination of a TBSO-substituted
vinyldiazoacetate and nitrones in a one-pot cascade process involving copper-catalyzed Mannich addition, dirhodium-catalyzed dinitrogen
extrusion and N-OTBS insertion, and acid-promoted aromatization (elimination).
Pyrroles are found in a broad range of bioactive
molecules1 and have multiple applications in materials
science.2,3 Efficient methods for their synthesis continue to
be a topic of intense interest,4 especially for complex
systems, and recent reports have focused on polysubstituted
pyrroles.5 However, none of these methods have been
designed for or are applicable to the synthesis of substituted
3-hydroxypyrroles, and there is only one recent example
specific to the preparation of 3-hydroxypyrroles,6,7 despite
their well-known applications.8 Herein we report a novel
(1) (a) Seiple, I. B.; Su, S.; Young, I. S.; Nakamura, A.; Yamaguchi,
A.; Jørgensen, L.; Rodriguez, R. A.; O’Malley, D. P.; Gaich, T.; Kck,
M.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 14710. (b) Fan, H.; Peng,
J.; Hamann, M.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
(2) Kim, S. K.; Sessler, J. L.; Gross, D. E.; Lee, C.-H.; Kim, J. S.;
Lynch, V. M.; Delmau, L. H.; Hay, B. P. J. Am. Chem. Soc. 2010, 132,
5827.
(3) Zhang, X.; Richter, L. J.; DeLongchamp, D. M.; Kline, R. J.;
Hammond, M. R.; McCulloch, I.; Heeney, M.; Ashraf, R. S.; Smith,
J. N.; Anthopoulos, T. D.; Schroeder, B. C.; Geerts, Y. H.; Fischer,
D. A.; Toney, M. F. J. Am. Chem. Soc. 2011, 133, 15073.
(6) Attanasi, O. A.; Berretta, S.; De Crescentini, L.; Favi, G.; Giorgi,
G.; Mantellini, F.; Nicolini, S. Adv. Synth. Catal. 2011, 353, 595.
(7) Synthesis of 3-alkoxy- or 3-acetoxypyrroles: (a) Lubriks, D.;
Sokolovs, I.; Suna, E. Org. Lett. 2011, 13, 4324. (b) Sasada, T.; Sawada,
T.; Ikeda, R.; Sakai, N.; Konakahara, T. Eur. J. Org. Chem. 2010, 4237.
(c) Dieker, J.; Frohlich, R.; Wurthwein, E.-U. Eur. J. Org. Chem. 2006,
5339. (d) Merz, A.; Anikin, S.; Lieser, B.; Heinze, J.; John, H. Chem.;
Eur. J. 2003, 9, 449.
(8) (a) Mcnab, H.; Monahan, L. C. In Chemistry of Heterocyclic
Compounds: Pyrroles, Part 2: The Synthesis, Reactivity, and Physical
Properties of Substituted Pyrroles; Jones, R. A., Eds.; John Wiley & Sons,
Inc.: Hoboken, New Jesery, 2008; Vol. 48. (b) Baughman, R. H. Science
2005, 308, 63. (c) Urbach, A. R.; Szewczyk, J. W.; White, S.; Turner,
J. M.; Baird, E. E.; Dervan, P. B. J. Am. Chem. Soc. 1999, 121, 11621.
(4) D’Ischia, M.; Napolitano, A. In Comprehensive Heterocyclic
Chemistry III; Katrisky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor,
R. J. K., Eds.; Pergamon-Elsevier Science: Amsterdam, 2008; Vol. 4.
(5) (a) Hong, D.; Zhu, Y.; Li, Y.; Lin, X.; Lu, P.; Wang, Y. Org. Lett.
2011, 13, 4668. (b) Yamagishi, M.; Nishigai, K.; Hata, T.; Urabe, H.
Org. Lett. 2011, 13, 4873. (c) Thompson, B. B.; Montgomery, J. Org.
Lett. 2011, 13, 3289. (d) Wang, H.-Y.; Mueller, D. S.; Sachwani, R. M.;
Kapadia, R.; Londino, H. N.; Anderson, L. L. J. Org. Chem. 2011, 76,
3203. (e) Attanasi, O. A.; Favi, G.; Mantellini, F.; Moscatelli, G.;
Santeusanio, S. J. Org. Chem. 2011, 76, 2860. (f) Trost, B. M.; Lumb,
J.-P.; Azzarelli, J. M. J. Am. Chem. Soc. 2011, 133, 740. (g) Rakshit, S.;
Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9585.
€
€
r
10.1021/ol2026125
Published on Web 10/27/2011
2011 American Chemical Society