5810
D. Aicher et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5808–5811
Table 1
as compared to Temoporfin. Chlorin 10 displayed a lower activity
and was only effective at a concentration of 10 mol. None of the
tested sensitizers showed dark toxicity.
Absorption data and 1O2 yield of chlorins 9, 10, and 11a
l
b
Sensitizer
kmax
e
kmax
e
kmax
e
kmax
e
kmax
e
1O2
In conclusion, an ‘osmium free’ strategy for the synthesis of b-
functionalized Temoporfin derivatives is presented. The approach
via a common diketo chlorin intermediate gives broad access to
novel b-substituted dihydroxy-chlorins.20 Alkyl-, aryl-, and trifluo-
romethyl groups could be used as nucleophiles and a clean double
addition reaction was observed. Compared to Temoporfin, the b-
substituted sensitizers possess a significantly increased chemical
stability. They exhibit a comparatively strong absorption in the
red spectral region, a high singlet oxygen quantum yield, and were
highly effective in in vitro assays against HT-29 tumor cells.
9
418
518
544
600
653
21900
644
25000
653
27600
0.97
1.56
1.10
116800
412
10800
514
7400
543
4600
592
10
11
213300
407
18300
518
17800
547
9000
599
166900
15200
15600
7700
a
Absorption spectra in acetone [kmax in nm,
1O2 yields (in EtOH) are given relative to 1O2 quantum yield of Temoporfin.
e
in dm3 molÀ1 cmÀ1].
b
meta-substituted aryl groups next to the oxidized pyrrolic subunit
are hindered in their rotation and the substituents can point inde-
pendently in the same or opposite directions.
Acknowledgments
The support of this research by the Arbeitsgemeinschaft indus-
trieller Forschungsvereinigungen ‘Otto-von-Guericke’ e. V. (AiF)
(Project: KF0579901UL7 and KF0249303UL7) is gratefully
acknowledged.
We next investigated the photophysical properties of the syn-
thesized dihydroxychlorins. In Table 1 the absorption data and
the singlet oxygen yields (relative to 1O2 quantum yield of Temo-
porfin) of the novel chlorins 9, 10, and 11 are summarized. Chlorins
9 and 11 possess a high extinction coefficient at 653 nm whereas
the corresponding Q band of chlorin 10 is shifted to 644 nm. The
singlet oxygen yields for compounds 9 and 11 are quite similar
to that of Temoporfin (Table 1). For the trifluoromethyl-substituted
chlorin 10 an increased relative quantum yield of 1.56 was ob-
served (Table 1). Finally, the photocytotoxicity of sensitizers 9,
10, and 11 was evaluated in cell assays against human colon ade-
nocarcinoma cells HT-29 (Fig. 2).19 The assays were carried out
after incubation for 24 h in 10% FCS containing medium and both
the dark and the phototoxicity were determined at two different
References and notes
1. (a) MacDonald, I. J.; Dougherty, T. J. J. Porphyrins Phthalocyanines 2001, 5, 105;
(b) Allison, R. R.; Downie, G. H.; Cuenca, R.; Hu, X.-H.; Childs, C. J. H.; Sibata, C.
H. Photodiagn. Photodyn. Ther. 2004, 1, 27.
2. Hopper, C. Lancet Oncol. 2000, 1, 212.
3. (a) Whitlock, H. W., Jr.; Hanauer, R.; Oester, M. Y.; Bower, B. K. J. Am. Chem. Soc.
1969, 91, 7485; (b) Bonnett, R.; White, R. D.; Winfield, U.-J.; Berenbaum, M. C.
Biochem. J. 1989, 261, 277.
4. Laville, I.; Figueiredo, T.; Loock, B.; Pigaglio, S.; Maillard, P.; Grierson, D. S.;
Carrez, D.; Croisy, A.; Blais, J. Bioorg. Med. Chem. 2003, 11, 1643.
5. (a) Fischer, H.; Eckoldt, H. Liebigs Ann. Chem. 1940, 543, 138; (b) Brückner, C.;
Dolphin, D. Tetrahedron Lett. 1995, 36, 3295; (c) Sutton, J. M.; Fernandez, N.;
Boyle, R. W. J. Porphyrins Phthalocyanines 2000, 4, 655; (d) Macalpine, J. K.;
Boch, R.; Dolphin, D. J. Porphyrins Phthalocyanines 2002, 6, 146; (e) Pandey, S. K.;
Gryshuk, A. L.; Graham, A.; Ohkubo, K.; Fukuzumi, S.; Dobhal, M. P.; Zheng, G.;
Ou, Z.; Zhan, R.; Kadish, K. M.; Oseroff, A.; Ramaprasad, S.; Pandey, R. K.
Tetrahedron 2003, 59, 10059; (f) Rancan, F.; Wiehe, A.; Nöbel, M.; Senge, M. O.;
Omari, S. A.; Böhm, F.; John, M.; Röder, B. Photochem. Photobiol. 2005, 78, 17; (g)
McCarthy, J. R.; Bhaumik, J.; Merbouh, N.; Weissleder, R. Org. Biomol. Chem.
2009, 7, 3430.
sensitizer concentrations (2 and 10 lmol). A laser with a wave-
length of 652 nm at a dose rate of 50 J/cm2 was used as the light
source. The photodynamic activity was compared to the approved
sensitizer Temoporfin. Chlorins 9 and 11 showed phototoxicity at
both concentrations and exhibited a very similar level of activity
6. For the use of Temoporfin derivatives in PDT see also: (a) Wiehe, A.; Shaker, Y.
M.; Brandt, J. C.; Mebs, S.; Senge, M. O. Tetrahedron 2005, 61, 5535; (b) Gravier,
J.; Schneider, R.; Frochot, C.; Bastogne, T.; Schmitt, F.; Didelon, J.; Guillemin, F.;
Barberi-Heyob, M. J. Med. Chem. 2008, 51, 3867.
control
7. Crossley, M. J.; Burn, P. L.; Langford, S. J.; Pyke, S. M.; Stark, A. G. J. Chem. Soc.,
Chem. Commun. 1991, 1557. see also Ref. 10.
2
10
8. Lindsey, J. S.; Schreimann, I. C.; Hsu, H. C.; Kearney, P. C.; Marguerettaz, A. M. J.
Org. Chem. 1987, 52, 827.
9. Giraudeau, A.; Callot, H. J.; Jordan, J.; Ezhar, I.; Gross, M. J. Am. Chem. Soc. 1979,
101, 3857.
Temoporfin
2
10
10. Crossley, M. J.; King, L. G.; Pyke, S. J. Tetrahedron 1987, 43, 4569.
11. Beavington, R.; Rees, P. A.; Burn, P. L. J. Chem. Soc., Perkin Trans. 1 1998, 2847.
12. Moriconi, E. J.; O’Connor, W. F.; Kuhn, L. P.; Keneally, E. A.; Wallenberger, F. T. J.
Am. Chem. Soc. 1959, 81, 6472.
13. Yang, S. I.; Seth, J.; Strachan, J.-P.; Gentemann, S.; Kim, D.; Holten, D.; Lindsey, J.
S.; Bocian, D. F. J. Porphyrins Phthalocyanines 1999, 3, 117.
2
10
2
9
dark
10
14. Chen, Y.; Medforth, C. J.; Smith, K. M.; Alderfer, J.; Dougherty, T. J.; Pandey, R. K.
J. Org. Chem. 2001, 66, 3930.
toxicity
15. (a) Ruppert, I.; Schlich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195; (b)
Prakash, G. K. S.; Krishnamurti, R.; Olah, G. H. J. Am. Chem. Soc. 1989, 111, 393;
(c) Li, G.; Chen, Y.; Missert, J. R.; Rungta, A.; Dougherty, T. J.; Grossman, Z. D.;
Pandey, R. K. J. Chem. Soc., Perkin Trans. 1 1999, 1785.
photo
2
10
2
toxicity
10
16. Typical procedure for the nucleophilic addition:
A solution of 7,8-dioxo-
10
5,10,15,20-tetrakis-(3-methoxyphenyl)-7,8-chlorin 5 (100 mg, 0.13 mmol) in
dry tetrahydrofuran (7 mL) was cooled under an argon atmosphere to À40 °C.
Trifluoromethyltrimethylsilane (350
lL, 2.66 mmol) and TBAFÁ3 H2O (10 mg,
2
10
2
0.03 mmol) were added and the mixture was stirred for 8 h. In order to cleave
the trimethylsilyl ether additional TBAFÁ3 H2O (100 mg, 0.3 mmol) was added
and the reaction mixture was stirred until TLC analysis showed complete
conversion. Then, water (40 mL) and CH2Cl2 (50 mL) were added, the organic
layer was separated, washed with water (40 mL), dried over anhydrous sodium
sulfate, and the solvent was removed under reduced pressure. The residue was
purified by flash chromatography with CH2Cl2/EtOAc 99:1 as eluent. The
11
10
0
50
cell viability
Figure 2. HT-29 cell assays.
100
compound
7,8-dihydroxy-5,10,15,20-tetrakis-(3-methoxyphenyl)-7,8-bis-
(trifluoromethyl)-7,8-chlorin
CH2Cl2/MeOH. (92 mg, 78%).
8 was obtained after recrystallization from
Compound 8: mp 177 °C; 1H NMR (500 MHz, CDCl3) d 8.63-8.61 (m, 2H), 8.47