718
Vol. 57, No. 7
10) Winans K. A., Bertozzi C. R., Chem. Biol., 9, 113—129 (2002).
11) Teixeira-Clerc F., Julien B., Grenard P., Van Nhieu J. T., Deveaux V., Li
L. Y., Serriere-Lanneau V., Ledent C., Mallat A., Lotersztajn S., Nat.
Med., 12, 671—676 (2006).
cytotoxicity of U27, C18 and C15 discovered through the
combinatorial approach is likely to occur mainly via binding-
mediated inhibition of apoptosis-regulating enzymes.
12) Ogretmen B., Hannun Y. A., Nat. Rev. Cancer, 4, 604—616 (2004).
13) Coursol S., Fan L. M., Le Stunff H., Spiegel S., Gilroy S., Assmann S.
M., Nature (London), 423, 651—654 (2003).
14) Padrón J. M., Curr. Med. Chem., 13, 755—770 (2006).
15) Olayioye M. A., Vehring S., Müller P., Hermann A., Schiller J., Thiele
C., Lindeman G. J., Visvader J. E., Pomorski T., J. Biol. Chem., 280,
27436—27442 (2005).
16) Kudo N., Kumaga K., Tomishige N., Yamaji T., Wakatsuki S., Nishi-
jima M., Hanada K., Kato R., Proc. Natl. Acad. Sci. U.S.A., 105,
488—493 (2008).
17) Hardman J. G., Goodman G. A., Limbird L. E., “Goodman and
Gilman’s The Pharmacological Basis of Therapeutics,” 9th ed., Mc-
Graw-Hill Companies, Southern California, 1996.
18) Johnsen J. I., Lindskog M., Ponthan F., Pettersen I., Elfman L., Orrego
A., Sveinbjornsson B., Kogner P., Cancer Res., 64, 7210—7215
(2004).
19) Takada Y., Bhardwaj A., Potdar P., Aggarwal B. B., Oncogene, 23,
9247—9258 (2004).
20) Barbaric´ M., Kralj M., Marjanovic´ M., Husnjak I., Pavelic´ K., Fil-
ipovic-Grcic´ J., Zorc D., Zorc B., Eur. J. Med. Chem., 42, 20—29
(2007).
21) Thun M. J., Henley S. J., Patrono C., J. Natl. Cancer Inst., 94, 252—
266 (2002).
Experimental
The reagents used in the amide bond formation was core amine (1 mg,
4 mmol), carboxylic acid (1 eq), diisopropyl ethyl amine (DIEA) (1.2 eq) and
2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU) (1.1 eq). Both the starting core amine and the carboxylic acids were
prepared as a stock solution of DMSO at a concentration of 0.1 mmol/200 ml
and 5 mmol/10 ml, respectively. HBTU and DIEA were dissolved in DMSO
as a concentration of 5 mmol/10 ml, respectively. Each of the acid portion
was firstly mixed with HBTU in a plastic tube for 30 s, followed by the addi-
tion of a mixture of core amine (10 ml) and DIEA (10 ml) in a total volume
of 40 ml. All vials were shaked for 1 min. A portion of the mixture (10 ml)
was transferred to a novel tube followed by addition of 990 ml of water. A
volume of 10 ml was pipetted out and added into the corresponding well of
microtiterplate planted with 100 ml of A549 or MCF7 cells in a concentra-
tion of 30000 cells/ml. After an incubation of 2 d, the supernatants were re-
moved through washing followed by MTT reagents and the absorbance at
580 nm was recorded according to the usual protocol conducted routinely in
the medicinal chemistry laboratory.
Acknowledgment We are grateful to the National Science Council of
Taiwan and CGMH_NTHU Joint Research for providing financial support
(NSC-95-2113-M-007-039 and CGTH96N2342E1).
22) Bock J. M., Menon S. G., Goswami P. C., Sinclair L. L., Bedford N. S.,
Domann F. E., Trask D. K., Mol. Carcinog., 46, 857—864 (2007).
23) Brown J. R., DuBois R. N., Clin. Cancer Res., 10, 4266s—4269s
(2004).
24) Lee D. W., Sung M. W., Park S. W., Seong W. J., Roh J. L., Park B.,
Heo D. S., Kim K. H., Anticancer Res., 22, 2089—2096 (2002).
25) Bottone F. G., Moon Y., Kim J. S., Alson-Mills B., Ishibashi M., Eling
T. E., Mol. Cancer Ther., 4, 693—703 (2005).
Supporting Information Available Details of the experimental proce-
dures including bioassay, characterization data and molecular docking for li-
1
brary members including H- and 13C-NMR and molecular docking by DS
program under ligandfit working model for library members.
References
1) Brik A., Wu C.-Y., Wong C.-H., Org. Biomol. Chem., 4, 1446—1457
(2006).
26) Oltersdorf T., Elmore S. W., Shoemaker A. R., Armstrong R. C.,
Augeri D. J., Belli B. A., Bruncko M., Deckwerth T. L., Dinges J.,
Hajduk P. J., Joseph M. K., Kitada S., Korsmeyer S. J., Kunzer A. R.,
Letai A., Li C., Mitten M. J., Nettesheim D. G., Ng S., Nimmer P. M.,
O’Connor J. M., Oleksijew A., Petros A. M., Reed J. C., Shen W.,
Tahir S. K., Thompson C. B., Tomaselli K. J., Wang B. L., Wendt M.
D., Zhang H. C., Fesik S. W., Rosenberg S. H., Nature (London), 435,
677—681 (2005).
27) Townsend D. M., Tew K. D., Oncogene, 22, 7369—7375 (2003).
28) Zhang K., Mack P., Wong K. P., Int. J. Oncol., 12, 871—882 (1998).
29) Oakley A. J., Rossjohn J., Lo Bello M., Caccuri A. M., Federici G.,
Parker M. W., Biochemistry, 36, 576—585 (1997).
2) Best M., Brik A., Chapman E., Lee L., Cheng W.-C., Wong C.-H.,
ChemBioChem, 5, 811—819 (2004).
3) Wu C.-Y., Chang, C.-F., Chen J. S. Y., Lee, S.-T., Wong C.-H., Lin, C.-
H., Angew. Chem.-Int. Edit., 42, 4661—4664 (2003).
4) Lee L. V., Mitchell M. L., Huang S. J., Fokin V. V., Sharpless K. B.,
Wong C. H., J. Am. Chem. Soc., 125, 9588—9589 (2003).
5) Brik A., Lin Y.-C., Elder J. Wong C.-H., Chem. Biol., 9, 891—896
(2002).
6) Lee S. G., Chmielewski J., Chem. Biol., 13, 421—426 (2006).
7) Yu C.-S., Chiang L.-W., Wu C.-H., Wang R.-T., Chen S.-W., Wang H.-
Y., Yeh C.-H., Nucl. Med. Biol., 33, 367—370 (2006).
8) Yu C.-S., Wu C.-H., Chiang L.-W., Pei K., Hsu Z.-K., Synthesis, 2006,
3835—3840 (2006).
30) Wang K., Li C., Song D., Zhao G., Zhao L., Jing Y., Cancer Res., 67,
7856—7864 (2007).
9) Yu C.-S., Wang R.-T., Chiang L.-W., Lee M.-S., Tetrahedron Lett., 48,
2979—2982 (2007).