262
EL GUESMI AND BOUBAKER
situated on a More O’Ferrall-Jencks diagram [32]
(Fig. S3 in the Supporting Information). We suggest
that the transition state for anilines addition to the tri-
flone 1 is imbalanced in the sense that charge delo-
calization into the 2,4,6-(SO2CF3) or 2,6,-(SO2CF3)-
4-NO2 phenyl ring lags somewhat behind C N bond
formation. This finding is consistent with the fact that
the intrinsic rate constants log ko for these reactions
are substantially lower.
3. (a) Bunnett, J. F.; Zahler, R. E. Chem Rev 1951, 49, 273–
412; (b) Bunnett, J. F.; Sekiguchi, S.; Smith, L. A. J Am
Chem Soc 1981, 103, 4865–4871; (c) Bunnett, J. F.;
Cartano, A.V. J Am Chem Soc 1981, 103, 4861–4865.
4. El Guesmi, N.; Boubaker, T.; Goumont, R.; Terrier, F.
Org Biomol Chem 2008, 6, 4041–4052.
5. Orvik, J. A.; Bunnett, J. F. J Am Chem Soc 1970, 92,
2417–2427.
6. Terrier, F. Nucleophilic Aromatic Displacement. The In-
fluence of the Nitro Group; Wiley-VCH: New York,
1991.
7. Thomas, A. E.; Chukwuemeka, I. Int J Chem Kinet 2002,
34, 645–650.
CONCLUSIONS
8. Buncel, E.; Dust, J. M.; Terrier, F. Chem Rev 1995, 95,
2261–2280.
9. Boubaker, T.; Goumont, R.; Jean, E.; Terrier, F. Org
Biomol Chem 2003, 1, 2764–2770.
10. El Hegazy, F. M.; Abdel Fattah, S. Z.; Hamed, S. A.;
Sharaf, S. M. J Phys Org Chem 2000, 13, 549–554.
11. Hammett, L. P. Reaction Rates, Equilibria and Mecha-
nism, 2nd ed.; McGraw-Hill: New York, 1970.
12. Parker, A. J. Adv Phys Org Chem 1967, 5, 173.
13. Alexander, J.; Ko, E. C. F.; Parker, A. J.; Broxton, T. J.
J Am Chem Soc 1968, 90, 5049–5069.
ꢀ
ꢀ
Activation parameters, ꢀ=H, ꢀ=S, and ꢀꢀ=G, are ob-
tained for five anilines by para-X-substituted anilines
(X = OCH3, CH3, H, F, Cl) from the second-order
rate constants at 15, 25, 35, 45, and 55◦C. All the
available data for reactions (2) are consistent with the
SNAr mechanism with addition of the aniline being a
rate-limiting step. The overall reactions are enthalpy
controlled in methanol. The inequality between the
Bro¨nsted αZ and βX values provides further evidence
for the imbalance transition state. The intrinsic reactiv-
ity value measured for 1a in methanol reflects one of the
lowest intrinsic reactivity ever observed for SNAr re-
actions. Another significant feature emerges from this
study, namely, that there is also a clear relationship
between the intrinsic reactivity log ko values and the
extent of resonance stabilization of the resulting nega-
tive charge.
14. Kapinus, E. I.; Rau, H. J Phys Chem A 1998, 102, 5569–
5576.
15. Finn, M.; Friedline, R.; Suleman, N. K.; Wohl, C. J.;
Tanko, J. M. J Am Chem Soc 2004, 126, 7578–7584.
16. Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.;
Boubaker, T.; Ofial, A. R.; Mayr, H. J Org Chem 2006,
71, 9088–9095.
17. Grunwald, E. J Am Chem Soc 1985, 107, 4710–4715.
18. Jencks, W. P. Chem Rev 1985, 85, 511–527.
19. Bernasconi, C. F. Adv Phys Org Chem 1992, 27, 119.
20. Crampton, M. R.; Rabbit, L. J Chem Soc, Perkin Trans
2 1999, 1669–1674.
SUPPORTING INFORMATION
Rate constant determinations at different temper-
atures in methanol for the reactions of anilines
2a–e with 2,4,6-tris(trifluoromethanesulfonyl)anisole
1a (Tables S1–S5), Eyring plots (Fig. S1), plot of
ꢀꢀ=H against ꢀꢀ=S (Fig. S2), and More O’Ferrall-
Jencks structure-reactivity diagram (Fig. S3) are avail-
able as Supporting Information in the online issue at
21. Bordwell, F. G.; Hughes, D. L. J Am Chem Soc 1986,
108, 5991–5997.
22. Bernasconi, C. F.; Ketner, R. J. J Org Chem 1998, 63,
6266–6272.
23. Marcus, R. A. J Phys Chem 1968, 72, 891–899.
24. El Guesmi, N.; Boubaker, T.; Goumont, R.; Terrier, F.
Chem Eur J 2009, 15, 12018–12029.
25. Asghar, B. H. M.; Crampton, M. R. Org Biomol Chem
2007, 5, 1646–1654.
26. Cox, J. P. L.; Crampton, M. R.; Wight, P. J Chem Soc,
Perkin Trans 2 1988, 25–29.
27. Terrier, F.; Chatrousse, A. P.; Soudais, Y.; Hlaibi, M. J
Org Chem 1984, 49, 4176–4181.
The authors are thankful to Profs. Franc¸ois Terrier and Re´gis
Goumont, University of Versailles, France, for providing lab-
oratory facilities.
28. Goumont, R.; Magnier, E.; Kizilian, E.; Terrier, F. J Org
Chem 2003, 68, 6566–6570.
BIBLIOGRAPHY
29. Terrier, F.; Magnier, E.; Kizilian, E.; Wakselman, C.;
Buncel, E. J Am Chem Soc 2005, 127, 5563–5571.
30. Bernasconi, C. F. Acc Chem Res 1987, 20, 301–308.
31. Bernasconi, C. F.; Ketner, R. J.; Chen, X.; Rappoport,
Z. ARKIVOC 2001, 161–178.
1. El Guesmi, N.; Boubaker, T.; Goumont, R. Int J Chem
Kinet 2010, 42, 203–210.
2. Boiko,V. N.; Shchupak, G. M.; Ignat’ev, N. V.;
Yagupol’skii, L. M. J Org Chem USSR (Engl. Transl.)
1979, 15, 1111–1112.
32. (a) More O’Ferrall, R. A. J Chem Soc (B) 1970, 274;
(b) Jencks, W. P. Chem Rev 1972, 72, 705.
International Journal of Chemical Kinetics DOI 10.1002/kin