5994
B. E. Sleebs et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5992–5994
Table 4
LIMK1 inhibition
Table 5
LIMK1 inhibition
a,b
a,b
of 4-substituted compounds 25–32
of 5,6-substituted compounds 35–48
#
Structure
IC50
#
Structure
IC50
#
Structure
IC50
#
Structure
IC50
18
35
1.8
36
25
>100
26
>100
37
39
2.1
3.2
38
40
2.7
11
27
>100
28
>100
29
31
>100
>100
30
32
>100
>100
41
43
45
47
49
51
2.3
42
44c
46
48
50
52
9.1
0.66
3.5
4.3
17
8.6
aKinaseGlo and TR-FRET assay formats.9,10
bIC50 values are
M.
l
2.8
12.7
>20
>20
Scheme 2. Synthesis of compounds 35–48. Reagents and conditions: (a) malonit-
rile, Et2NH, S8, EtOH, 70 °C; (b) formamidine acetate, formamide, 160 °C.
directly into the 4-aminopyrimidine (Scheme 2). However it was
noted that the yields of Gewald reaction using malonitrile, com-
pared with using ethyl 2-cyanoacetate (Scheme 1), were dramati-
cally reduced and more byproducts observed. Using this
synthetic approach analogues 35–52 were produced (Table 5).
Compounds 44 and 45 are mixture of regioisomers as a result of
the lack of regio control from the Gewald reaction. The isomers
were unable to be separated, so were submitted for LIMK1 evalua-
tion as a mixture. Compounds 49–52 were produced from com-
pound 47 either via hydrolysis or aminolysis.
Of the analogues presented in Table 5, it appeared that a num-
ber changes to the 5,6-substitution pattern were tolerated. How-
ever, it appeared any heteroatom substituted into the 5,6-
carbocycle system was slightly detrimental to activity and polar
extensions such as those in 47, 49–52 led to either a slight (52)
or complete (51) loss of activity. Hydrophobicity was clearly pref-
erable for activity and several simple hydrophobic compounds (35,
37–39, 41, 45, 46 and 48) returned single digit micromolar activity.
Indeed, the regioisomeric mixture of compound 44 was the most
potent and returned an IC50 of 660 nM. The regioisomer responsi-
ble for biological activity remains to be determined.
9.5
KinaseGlo and TR-FRET assay formats.9,10
IC50 values are
A mixture of regioisomers.
a
b
c
lM.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Scott, R. W.; Olson, M. F. J. Mol. Med. 2007, 85, 555.
2. Bernard, O. Int. J. Biochem. Cell Biol. 2007, 39, 1071.
3. Ross-Macdonald, P.; de Silva, H.; Guo, Q.; Xiao, H.; Hung, C.-Y.; Penhallow, B.;
Markwalder, J.; He, L.; Attar, R. M.; Lin, T.-A.; Seitz, S.; Tilford, C.; Wardwell-
Swanson, J.; Jackson, D. Mol. Cancer Ther. 2008, 7, 3490.
4. Wrobleski, S. T.; Lin, S.; Leftheris, K.; He, L.; Seitz, S. P.; Lin, T.-a.; Vaccaro, W. US
Patent, 2006.
5. Scott, R. W.; Hooper, S.; Crighton, D.; Li, A.; König, I.; Munro, J.; Trivier, E.;
Wickman, G.; Morin, P.; Croft, D. R.; Dawson, J.; Machesky, L.; Anderson, K. I.;
Sahai, E. A.; Olson, M. F. J. Cell Biol. 2010, 191, 169.
6. Burgoon, H. A.; Goodwin, N. C.; Harrison, B. A.; Healy, J. P.; Liu, Y.; Mabon, R.;
Marinelli, B.; Rawlins, D. B.; Rice, D. S.; Whitlock, N. A. US Patent 2009264450
Chem Abstr 2009 151:491144 28–16.
7. Harrison, B. A.; Kimball, S. D.; Mabon, R.; Rawlins, D. B.; Rice, D. S.; Voronkov,
M. V.; Zhang, Y. WO 2009021169 Chem Abstr 2009 150:237638 28–17.
8. Harrison, B. A.; Whitlock, N. A.; Voronkov, M. V.; Almstead, Z. Y.; Gu, K.-J.;
Mabon, R.; Gardyan, M.; Hamman, B. D.; Allen, J.; Gopinathan, S.; McKnight, B.;
Crist, M.; Zhang, Y.; Liu, Y.; Courtney, L. F.; Key, B.; Zhou, J.; Patel, N.; Yates, P.
W.; Liu, Q.; Wilson, A. G. E.; Kimball, S. D.; Crosson, C. E.; Rice, D. S.; Rawlins, D.
B. J. Med. Chem. 2009, 52, 6515.
9. Sleebs, B. E.; Levit, A.; Ganame, D.; Falk, H.; Street, I. P.; Baell, J. B. Med. Chem.
Commun. (submitted).
10. Sleebs, B. E.; Levit, A.; Street, I. P.; Falk, H.; Hammonds, T.; A.-C., W.; Charles, M.
D.; Baell, J. B. Med. Chem. Commun. (submitted).
In summary, we have identified 5,6-substituted 4-aminothie-
no[2,3-d] pyrimidines as a promising lead series, which possesses
moderate LIMK inhibition. In particular, compound 44, with a
molecular weight of only 253, exhibits submicromolar LIMK1
inhibitory activity with an IC50 of 0.66 lM and has potential for sig-
nificant optimization of drug-like properties.
Acknowledgments
The authors acknowledge the financial support of the Cancer
Therapeutics CRC, established and supported under the Australian
Government’s Cooperative Research Centres Program; NHMRC IRI-
ISS grant number 361646 and Victorian State Government OIS
grant.