Journal of the American Chemical Society
Communication
(5) (a) Bornand, M.; Chen, P. Angew. Chem., Int. Ed. 2005, 44, 7909.
(b) Bornand, M.; Torker, S.; Chen, P. Organometallics 2007, 26, 3585.
(c) Torker, S.; Muller, A.; Sigrist, R.; Chen, P. Organometallics 2010,
29, 2735.
(6) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H.
J. Am. Chem. Soc. 2012, 134, 693 and references cited therein.
(7) For stereogenic-at-Mo catalysts, see: (a) Malcolmson, S. J.; Meek,
S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456,
933. (b) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.;
Hoveyda, A. H. Nature 2011, 471, 461.
(8) For stereogenic-at-W catalysts, see: Yu, M.; Wang, C.; Kyle, A. F.;
Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011,
479, 88.
(9) (a) Berry, R. S. J. Chem. Phys. 1960, 32, 933. (b) Muetterties, E.
L. J. Am. Chem. Soc. 1969, 91, 1636. (c) Gillespie, P.; Hoffman, P.;
Klusacek, H.; Marquarding, D.; Pfohl, S.; Ramirez, F.; Tsolis, E. A.;
Ugi, I. Angew. Chem., Int. Ed. Engl. 1971, 10, 687.
The nonmetathetic interconversions of higher-energy carbenes
can account for errors in copolymerization of alkene substrates
performed with complexes such as 2 (Figure 1).5 Another
example pertains to catalytic ROCM performed with 1a; high
enantioselectivity likely demands that only one of the two
forms participate in the stereochemistry-determining RO step;
the less energetic exo species participates in RO of the strained
alkene, and the endo carbene is involved in product-releasing
CM.11b Conditions that promote out-of-sequence non-OM-
based isomerization of the higher-energy endo carbene
engender diminished enantioselectivities. Such considerations
provide a rationale for the enantioselectivity differences in
enantiomeric ratio (er) values in Ru-catalyzed ROCM of
oxabicyclic alkenes such as 10 with aryl- versus alkyl-substituted
terminal olefins (eq 1).25 Since there is minimal non-OM-based
(10) The designation is used according to whether the RuC bond
is exo or endo with respect to the azaoxaruthenacycle.
(11) (a) Reference 5a. (b) Hoveyda, A. H.; Malcolmson, S. J.; Meek,
S. J.; Zhugralin, A. R. Angew. Chem., Int. Ed. 2010, 49, 34.
(12) Khan, R. K. M.; O’Brien, R. V.; Torker, S.; Li, B.; Hoveyda, A.
H. J. Am. Chem. Soc. 2012, DOI: 10.1021/ja304827a.
(13) For studies regarding structures of Ru-based metallacyclobu-
tanes, see: (a) Romero, P. E.; Piers, W. E. J. Am. Chem. Soc. 2005, 127,
5032. (b) Wenzel, A. G.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128,
16048. (c) van der Eide, E. F.; Romero, P. E.; Piers, W. E. J. Am. Chem.
Soc. 2008, 130, 4485. (d) Van der Eide, E. F.; Piers, W. E. Nat. Chem.
2010, 2, 571.
isomerization with the faster-forming benzylidene intermedi-
ates, 11a is obtained in higher enantioselectivity than 11b (i.e.,
less out-of-sequence interconversion with the aryl olefin).
More detailed computational and mechanistic studies and
utilization of the concepts described above in the design of
more efficient catalysts and stereoselective OM protocols are
underway.
(14) See the Supporting Information (SI) for details.
(15) One endo isomer of a phosphine complex related to 2 (vs
bidentate benzylidenes as in 1−3) that is thermodynamically stabilized
by a C−H agostic interaction has been isolated and characterized (see
ref 5b).
(16) For detailed spectroscopic analyses to establish the identity of
Ru complexes, see the SI.
(17) The calculated shift for the signal corresponding to endo-7a is
similar in value to that measured experimentally (in CDCl3, calcd
17.01 ppm, exptl 16.82 ppm). See the SI for details.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures, spectral and analytical data for all
products, and crystallographic data (CIF). This material is
■
S
(18) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A.
H. J. Am. Chem. Soc. 1999, 121, 791.
(19) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2000, 122, 8168.
(20) Similar characteristics have been disclosed for a Ru-based
bidentate carbene with a sulfide bridge syn to the NHC complex. See:
Ben-Asuly, A.; Tzur, E.; Diesendruck, C. E.; Sigalov, M.; Goldberg, I.;
Lemcoff, N. G. Organometallics 2008, 27, 811.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
†R.K.M.K. and A.R.Z. contributed equally.
(21) A Ru complex is more polar when a bidentate carbene is
chelated syn to the NHC than when associated anti to the same ligand.
See: (a) Benitez, E.; Goddard, W. A., III. J. Am. Chem. Soc. 2005, 127,
12218. (b) Correa, A.; Cavallo, L. J. Am. Chem. Soc. 2006, 128, 13352.
(22) For mechanistic aspects of polytopal rearrangements, see:
(a) Couzijn, E. P. A.; Slootweg, J. C.; Ehlers, A. W.; Lammertsma, K. J.
Am. Chem. Soc. 2010, 132, 18127 and references cited therein.
(b) Moberg, C. Angew. Chem., Int. Ed. 2011, 50, 10290. For related
isomerizations involving Ru complexes, see: (c) Hoffman, P. R.;
Caulton, K. G. J. Am. Chem. Soc. 1975, 97, 4221. (d) Krassowski, D.
W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jaconson, R. A. Inorg.
Chem. 1988, 27, 4294.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NSF (CHE-0715138
and 1111074). A.R.Z. and R.V.O. were LaMattina Graduate
Fellows and S.T. was a Swiss NSF Postdoctoral Fellow.
REFERENCES
■
(1) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243.
(2) For the mechanism of Ru-catalyzed OM, see: (a) Sanford, M. S.;
Love, J. A. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinheim, Germany, 2003; Vol. 1, p 112. (b) Adlhart, C.; Chen, P. J.
Am. Chem. Soc. 2004, 126, 3496.
(23) Marinescu, S. C.; Schrock, R. R.; Li, B.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 58.
(24) Poater, A.; Ragone, F.; Correa, A.; Szadkowska, A.;
Barbasiewicz, M.; Grela, K.; Cavallo, L. Chem.Eur. J. 2010, 16,
14354.
(25) In regard to the slower reaction of alkyl- vs aryl-substituted
terminal olefins with Ru-based carbenes, see: Lane, D. R.; Beavers, C.
M.; Olmstead, M. M.; Schore, N. E. Organometallics 2009, 28, 6789.
(3) Meek, S. J.; Malcolmson, S. J.; Li, B.; Schrock, R. R.; Hoveyda, A.
H. J. Am. Chem. Soc. 2009, 131, 16407.
(4) (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda,
A. H. J. Am. Chem. Soc. 2002, 124, 4954. (b) Van Veldhuizen, J. J.;
Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am.
Chem. Soc. 2003, 125, 12502. (c) Van Veldhuizen, J. J.; Campbell, J. E.;
Giudici, R. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 6877.
12441
dx.doi.org/10.1021/ja3056722 | J. Am. Chem. Soc. 2012, 134, 12438−12441