The Journal of Organic Chemistry
ARTICLE
Here, α is the fine structure constant, a0 the Bohr radius, c the speed of
light, ω the energy of the exciting photon (in case of the TPA process,
one-half of the excitation energy), and πΓ a normalization factor due to
the Lorentzian line-shape broadening of the excited state (Γ =0.2 eV was
assumed throughout this work). The units of δTPA will become GM
Dahlstedt, E.; Collins, H. A.; Balaz, M.; Kuimova, M. K.; Khurana, M.;
Wilson, B. C.; Phillips, D.; Anderson, H. L. Org. Biomol. Chem. 2009,
7, 897–904. Prasad, P. N.; Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.;
Pandey, R. K. J. Am. Chem. Soc. 2007, 129, 2669–2675.
(6) Chong, T. C.; Hong, M. H.; Shi, L. P. Laser Photonics Rev. 2010,
4, 123–143. Juodkazis, S.; Mizeikis, V.; Misawa, H. J. Appl. Phys.
2009, 106. Lee, K. S.; Kim, R. H.; Yang, D. Y.; Park, S. H. Prog. Polym.
Sci. 2008, 33, 631–681. LaFratta, C. N.; Fourkas, J. T.; Baldacchini, T.;
Farrer, R. A. Angew. Chem., Int. Ed. 2007, 46, 6238–6258. Kawata, S.;
Sun, H. B.; Tanaka, T.; Takada, K. Nature 2001, 412, 697–698.
Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich,
J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-
Maughon, D.; Qin, J. Q.; Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.;
Perry, J. W. Nature 1999, 398, 51–54.
(7) See for example: Kim, H. M.; Cho, B. R. Chem. Commun.
2009, 153–164. Mongin, O.; Porres, L.; Charlot, M.; Katan, C.;
Blanchard-Desce, M. Chem.—Eur. J. 2007, 13, 1481–1498. Fang, Q.;
Liu, Z. Q.; Wang, D.; Cao, D. X.; Xue, G.; Yu, W. T.; Lei, H. Chem.—Eur.
J. 2003, 9, 5074–5084. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.;
Barlow, S.; Hu, Z. Y.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.;
Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J. L. J. Am. Chem.
Soc. 2000, 122, 9500–9510. Albota, M.; Beljonne, D.; Bredas, J. L.;
Ehrlich, J. E.; Fu, J. Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.;
Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.;
Subramaniam, C.; Webb, W. W.; Wu, X. L.; Xu, C. Science 1998,
281, 1653–1656. Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard,
A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L. X.; He, G. S.; Prasad, P. N. Chem.
Mater. 1998, 10, 1863–1874.
(cm4 s photonꢀ1), provided we use centimeter-gram-second units for
3 3
a0 and c, and atomic units for ω and Γ.
’ ASSOCIATED CONTENT
S
Supporting Information. General experimental meth-
b
ods, H and 13C NMR spectra of new compounds, linear and
1
nonlinear optical properties of dipolar compounds calculated at
the DFT level, and Cartesian coordinates of the optimized
ground-state structures. This material is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: peter.hrobarik@savba.sk.
’ ACKNOWLEDGMENT
This work has been supported by the Slovak Grant Agencies
APVV (No. 0424-10) and VEGA (No. 1/4470/07) and by the
Research & Development Operational Programme (“Center of
excellence for design, preparation, and diagnostics of nanostruc-
tures for electronics and photonics”, NanoNet) funded by the
European Regional Development Fund (ERDF). Dr. M. Cigꢀaꢁn is
acknowledged for measurement of fluorescence quantum yields
and Dr. M. Zajac for fruitful discussions. P.H. thanks the Alexander
von Humboldt Foundation for a research fellowship.
(8) Hrobarikova, V.; Hrobarik, P.; Gajdos, P.; Fitilis, I.; Fakis, M.;
Persephonis, P.; Zahradnik, P. J. Org. Chem. 2010, 75, 3053–3068.
(9) Lartia, R.; Allain, C.; Bordeau, G.; Schmidt, F.; Fiorini-
Debuisschert, C.; Charra, F.; Teulade-Fichou, M. P. J. Org. Chem. 2008,
73, 1732–1744.
(10) Xu, Q. H.; Shao, J. S., J. J.; Guan, Z. P.; Yan, Y. L.; Jiao, C. J.; Chi,
C. Y. J. Org. Chem. 2011, 76, 780–790. Andrade, C. D.; Yanez, C. O.;
Rodriguez, L.; Belfield, K. D. J. Org. Chem. 2010, 75, 3975–3982.
Belfield, K. D.; Bondar, M. V.; Hernandez, F. E.; Masunov, A. E.;
Mikhailov, I. A.; Morales, A. R.; Przhonska, O. V.; Yao, S. J. Phys. Chem. C
2009, 113, 4706–4711. Shao, P.; Huang, B.; Chen, L. Q.; Liu, Z. J.; Qin,
J. G.; Gong, H. M.; Ding, S.; Wang, Q. Q. J. Mater. Chem. 2005,
15, 4502–4506. Nielsen, C. B.; Johnsen, M.; Arnbjerg, J.; Pittelkow, M.;
McIlroy, S. P.; Ogilby, P. R.; Jorgensen, M. J. Org. Chem. 2005, 70,
7065–7079. Belfield, K. D.; Morales, A. R.; Kang, B. S.; Hales, J. M.;
Hagan, D. J.; Van Stryland, E. W.; Chapela, V. M.; Percino, J. Chem.
Mater. 2004, 16, 4634–4641. Cao, D. X.; Fang, Q.; Wang, D.; Liu, Z. Q.;
Xue, G.; Xu, G. B.; Yu, W. T. Eur. J. Org. Chem. 2003, 3628–3636.
Abbotto, A.; Beverina, L.; Bozio, R.; Facchetti, A.; Ferrante, C.; Pagani,
G. A.; Pedron, D.; Signorini, R. Org. Lett. 2002, 4, 1495–1498.
(11) Hrobarik, P.; Sigmundova, I.; Zahradnik, P.; Kasak, P.; Arion,
V.; Franz, E.; Clays, K. J. Phys. Chem. C 2010, 114, 22289–22302.
(12) Hrobarik, P.; Sigmundova, I.; Zahradnik, P. Synthesis 2005,
600–604.
’ REFERENCES
(1) For recent reviews, see: Pawlicki, M.; Collins, H. A.; Denning,
R. G.; Anderson, H. L. Angew. Chem., Int. Ed. 2009, 48, 3244–3266.
Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanchard-Desce, M.
Adv. Mater. 2008, 20, 4641–4678. He, G. S.; Tan, L. S.; Zheng, Q.;
Prasad, P. N. Chem. Rev. 2008, 108, 1245–1330.
(2) Kim, H. M.; Cho, B. R. Acc. Chem. Res. 2009, 42, 863–872.
Helmchen, F.; Denk, W. Nat. Methods 2005, 2, 932–940. Larson, D. R.;
Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.;
Webb, W. W. Science 2003, 300, 1434–1436. Zipfel, W. R.; Williams,
R. M.; Webb, W. W. Nat. Biotechnol. 2003, 21, 1368–1376. Denk, W.;
Strickler, J. H.; Webb, W. W. Science 1990, 248, 73–76.
(3) Singer, K. D.; Lott, J.; Ryan, C.; Valle, B.; Johnson, J. R.; Schiraldi,
D. A.; Shan, J.; Weder, C. Adv. Mater. 2011, 23, 2425–2429. Dvornikov,
A. S.; Walker, E. P.; Rentzepis, P. M. J. Phys. Chem. A 2009, 113,
13633–13644. Walker, E.; Rentzepis, P. M. Nat. Photonics 2008,
2, 406–408. Tian, H.; Feng, Y. L. J. Mater. Chem. 2008, 18, 1617–
1622. Parthenopoulos, D. A.; Rentzepis, P. M. Science 1989, 245,
843–845.
(4) Andraud, C.; Bouit, P. A.; Wetzel, G.; Berginc, G.; Loiseaux, B.;
Toupet, L.; Feneyrou, P.; Bretonniere, Y.; Kamada, K.; Maury, O. Chem.
Mater. 2007, 19, 5325–5335. Lin, T. C.; He, G. S.; Prasad, P. N.; Tan,
L. S. J. Mater. Chem. 2004, 14, 982–991. Ehrlich, J. E.; Wu, X. L.; Lee,
I. Y. S.; Hu, Z. Y.; Rockel, H.; Marder, S. R.; Perry, J. W. Opt. Lett. 1997,
22, 1843–1845. He, G. S.; Xu, G. C.; Prasad, P. N.; Reinhardt, B. A.;
Bhatt, J. C.; Dillard, A. G. Opt. Lett. 1995, 20, 435–437.
(13) Hrobarik, P.; Zahradnik, P.; Fabian, W. M. F. Phys. Chem. Chem.
Phys. 2004, 6, 495–502.
(14) Zajac, M.; Hrobarik, P.; Magdolen, P.; Foltinova, P.; Zahradnik,
P. Tetrahedron 2008, 64, 10605–10618. Costa, S. P. G.; Batista, R. M. F.;
Cardoso, P.; Belsley, M.; Raposo, M. M. M. Eur. J. Org. Chem. 2006,
3938–3946. Batista, R. M. F.; Costa, S. P. G.; Malheiro, E. L.; Belsley, M.;
Raposo, M. M. M. Tetrahedron 2007, 63, 4258–4265. Coe, B. J.; Harris,
J. A.; Hall, J. J.; Brunschwig, B. S.; Hung, S. T.; Libaers, W.; Clays, K.;
Coles, S. J.; Horton, P. N.; Light, M. E.; Hursthouse, M. B.; Garin, J.;
Orduna, J. Chem. Mater. 2006, 18, 5907–5918. Andreu, R.; Galan, E.;
Garin, J.; Orduna, J.; Alicante, R.; Villacampa, B. Tetrahedron Lett. 2010,
51, 6863–6866. He, M.; Zhou, Y. M.; Miao, J. L.; Liu, C.; Cui, Y. P.;
Zhang, T. Dyes Pigm. 2010, 86, 107–114. Quist, F.; Velde, C. M. L. V.;
Didier, D.; Teshome, A.; Asselberghs, I.; Clays, K.; Sergeyev, S. Dyes
Pigm. 2009, 81, 203–210. Tambe, S. M.; Kittur, A. A.; Inamdar, S. R.;
Mitchell, G. R.; Kariduraganavar, M. Y. Opt. Mater. 2009, 31, 817–825.
(5) Ogawa, K.; Kobuke, Y. Org. Biomol. Chem. 2009, 7, 2241–2246.
Nielsen, C. B.; Arnbjerg, J.; Johnsen, M.; Jorgensen, M.; Ogilby, P. R.
J. Org. Chem. 2009, 74, 9094–9104. Velusamy, M.; Shen, J. Y.; Lin, J. T.;
Lin, Y. C.; Hsieh, C. C.; Lai, C. H.; Lai, C. W.; Ho, M. L.; Chen, Y. C.;
Chou, P. T.; Hsiao, J. K. Adv. Funct. Mater. 2009, 19, 2388–2397.
8735
dx.doi.org/10.1021/jo201411t |J. Org. Chem. 2011, 76, 8726–8736