Fig. 3 Circular dichroism scans at 20 1C (a,b) and thermal melts (c) for peptides 1–5 and oxime-bridged cyclic peptides 2b–5b. Measurements
were carried out on 100 mM concentration peptide solutions in 100 mM phosphate pH 7 in absence (a) or presence (b,c) of 200 mM sodium
periodate. Measurements of 2b–5b were carried out on unseparated E/Z oxime mixtures.
Molecular modelling suggests that the oxime macrocycles in
4b and 5b cannot be accommodated into an idealized a-helix
without significant side-chain distortion (Fig. S5w). The best
folded oxime-constrained peptides 2b and 3b are more helical
than the control sequence 1 under identical conditions.
Replacement of the Z residue in 3 with Lys (i.e., O - CH2
substitution on the side chain) abolished the enhanced helicity
observed for 3 after periodate addition (Fig. S6w), supporting
the essential role of the oxime bridge in the observed CD data.
In thermal melts monitored at 222 nm, 2b and 3b show a
B15 1C increase in Tm relative to 1 (Fig. 3c, Table S1w).
Interestingly, the oxime side-chain linkages impacted the
reversibility of the folding process; neither 2b nor 3b recovered
their initial helicity after cooling a thermally unfolded sample.
The unfolding of control peptide 1 was fully reversible under
these conditions.
(d) C. G. Cummings and A. D. Hamilton, Curr. Opin. Chem. Biol.,
2010, 14, 341–346.
3 (a) A. M. Felix, C. T. Wang, E. P. Heimer and A. Fournier, Int. J.
Pept. Protein Res., 1988, 31, 231–238; (b) for a review, see:
J. W. Taylor, Biopolymers, 2002, 66, 49–75.
4 (a) D. Y. Jackson, D. S. King, J. Chmielewski, S. Singh and
P. G. Schultz, J. Am. Chem. Soc., 1991, 113, 9391–9392;
(b) H. E. Blackwell and R. H. Grubbs, Angew. Chem., Int. Ed.,
1998, 37, 3281–3284; (c) C. E. Schafmeister, J. Po and
G. L. Verdine, J. Am. Chem. Soc., 2000, 122, 5891–5892;
(d) F. M. Brunel and P. E. Dawson, Chem. Commun., 2005,
2552–2554; (e) F. Z. Zhang, O. Sadovski, S. J. Xin and
G. A. Woolley, J. Am. Chem. Soc., 2007, 129, 14154–14155;
(f) S. Cantel, A. L. C. Isaad, M. Scrima, J. J. Levy,
R. D. DiMarchi, P. Rovero, J. A. Halperin, A. M. D’Ursi,
A. M. Papini and M. Chorev, J. Org. Chem., 2008, 73,
5663–5674; (g) M. M. Madden, C. I. R. Vera, W. J. Song and
Q. Lin, Chem. Commun., 2009, 5588–5590.
5 (a) E. Cabezas and A. C. Satterthwait, J. Am. Chem. Soc., 1999,
121, 3862–3875; (b) R. N. Chapman, G. Dimartino and
P. S. Arora, J. Am. Chem. Soc., 2004, 126, 12252–12253.
6 For select examples, see: (a) S. K. Sia, P. A. Carr, A. G. Cochran,
V. N. Malashkevich and P. S. Kim, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 14664–14669; (b) R. E. Moellering, M. Cornejo,
T. N. Davis, C. Del Bianco, J. C. Aster, S. C. Blacklow,
A. L. Kung, D. G. Gilliland, G. L. Verdine and J. E. Bradner,
Nature, 2009, 462, 182–188.
7 (a) S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders
and J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898–952;
(b) P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. L. Wietor,
J. K. M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652–3711.
8 (a) K. Rose, J. Am. Chem. Soc., 1994, 116, 30–33; (b) L. E. Canne,
A. R. Ferredamare, S. K. Burley and S. B. H. Kent, J. Am. Chem.
Soc., 1995, 117, 2998–3007; (c) J. Shao and J. P. Tam, J. Am.
Chem. Soc., 1995, 117, 3893–3899.
9 V. A. Polyakov, M. I. Nelen, N. Nazarpack-Kandlousy,
A. D. Ryabov and A. V. Eliseev, J. Phys. Org. Chem., 1999, 12,
357–363.
10 (a) T. D. Pallin and J. P. Tam, J. Chem. Soc., Chem. Commun.,
1995, 2021–2022; (b) F. Wahl and M. Mutter, Tetrahedron Lett.,
1996, 37, 6861–6864; (c) K. D. Roberts, J. N. Lambert, N. J. Ede
and A. M. Bray, J. Pept. Sci., 2004, 10, 659–665.
In summary, we have demonstrated that a bio-orthogonal
oxime side-chain linkage can promote a-helical folding in a
medium-length peptide in aqueous solution. The covalent
bridge is formed rapidly and in high yield under neutral
buffered conditions. Spacing and side-chain length of the
residues bearing the aminooxy and aldehyde precursor
functional groups are important determinants of a-helicity in
the cyclic oxime. We see evidence that the oxime peptides are
capable of isomerization and dynamic exchange with an
aminooxy-functionalized small molecule; however, the rate
of exchange is slow at neutral pH.16 It will be interesting to
see how the rate of oxime exchange compares when the
competing aminooxy groups reside on the same molecule
(i.e., a longer peptide with n U residues and n+1 Z residues).
We see such species as being useful for the template-assisted
discovery of new bioactive cross-link topologies and folding
patterns in polycyclic peptides and proteins. Efforts to analyse
the kinetics and thermodynamics of folding and oxime
exchange in these and more complex systems are ongoing.
We thank the University of Pittsburgh for financial support.
11 S. Marqusee and R. L. Baldwin, Proc. Natl. Acad. Sci. U. S. A.,
1987, 84, 8898–8902.
12 For a review, see: O. Melnyk, J. A. Fehrentz, J. Matinez and
H. Gras-Masse, Biopolymers, 2000, 55, 165–186.
13 F. Liu, J. Thomas and T. R. Burke, Synthesis, 2008, 2432–2438.
14 C. A. Guy and G. B. Fields, Methods Enzymol., 1997, 289, 67–83.
15 J. Kalia and R. T. Raines, Angew. Chem., Int. Ed., 2008, 47,
7523–7526.
16 (a) W. P. Jencks, in Progress in Physical Organic Chemistry,
ed. S. G. Cohen, A. Streitwieser and R. W. Taft, John Wiley &
Sons, New York, 1964, pp. 63–128; (b) A. Dirksen, T. M. Hackeng
and P. E. Dawson, Angew. Chem., Int. Ed., 2006, 45, 7581–7584.
Notes and references
1 A. L. Jochim and P. S. Arora, ACS Chem. Biol., 2010, 5, 919–923.
2 (a) M. J. I. Andrews and A. B. Tabor, Tetrahedron, 1999, 55,
11711–11743; (b) J. Garner and M. M. Harding, Org. Biomol.
Chem., 2007, 5, 3577–3585; (c) L. K. Henchey, A. L. Jochim and
P. S. Arora, Curr. Opin. Chem. Biol., 2008, 12, 692–697;
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10915–10917 10917