ORGANIC
LETTERS
2011
Vol. 13, No. 21
5866–5869
Multicomponent Catalytic Asymmetric
Aziridination of Aldehydes
Anil K. Gupta, Munmun Mukherjee, and William D. Wulff*
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824,
United States
Received September 14, 2011
ABSTRACT
The first multicomponent catalytic asymmetric aziridination reaction is developed to give aziridine-2-carboxylic esters with very high diastereo-
and enantioselectivity from aromatic and aliphatic aldehydes. This new method pushes the boundary of the aziridination reaction to substrates
that failed with preformed imines.
In recent times, multicomponent reactions have been
quite extensively studied and applied in the field of asym-
metric catalysis.1 Over the past few years, considerable ad-
vances have been made in the field of catalytic asymmetric
aziridination.2 However, to the best of our knowlegde, no
example of a multicomponent catalytic asymmetric aziridi-
nation has been reported.1,3À5 A true multicomponent reac-
tion involves the reaction of three or more reagents added
simultaneously.1 Multicomponent reactions that involve re-
action between two reagents and then interception of the
resulting intermediate by the addition of a third reagent are
sequential component reactions.1,4 Herein, we report the first
multicomponent catalytic asymmetric aziridination (MCAZ)
which incorporates the most simplified protocol yet developed
for our catalytic asymmetric aziridination reaction (Figure 1).
We have previously developed chiral catalysts for the
asymmetric synthesis of aziridines from the reaction of
diazo compounds and imines (AZ reaction) (Figure 1A).6
(1) (a) Guillena, G.; Ramon, D. J.; Yus, M. Tetrahedron: Asymmetry
2007, 18, 693–700. (b) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed.
2005, 44, 1602–1634. (c) Multicomponent Reactions; Zhu, J., Bienayme,
H., Eds.; Wiley-VCH: 2005.
Figure 1. (A) Catalytic asymmetric aziridination of imines.
(B) Three-component catalytic asymmetric aziridination.
(2) Pellissier, H. Tetrahedron 2010, 66, 1509.
(3) For multicomponent aziridinations with nonchiral catalysts, see:
(a) Nagayama, S.; Kobayashi, S. Chem. Lett. 1998, 685–686. (b) Kubo,
T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 625–626. (c) Yadav,
J. S.; Reddy, B. V. S.; Rao, M. S.; Reddy, P. N. Tetrahedron Lett. 2003,
44, 5275–5278. (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, P. N.; Rao,
M. S. Synthesis 2003, 1387–1390. (e) Ishii, Y.; Sakaguchi, S. Bull. Chem.
Soc. Jpn. 2004, 77, 909–920.
(4) For a sequential component aziridination with a chiral catalyst,
see: Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445–2447.
(5) For a stoichiometric asymmetric multicomponent aziridination,
see: (a) Minakata, S.; Ando, T.; Nishimura, M.; Ryu, I.; Komatsu, M.
Angew. Chem., Int. Ed. 1998, 37, 3392–3394. (b) Nishimura, M.;
Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org.
Chem. 2002, 67, 2101–2110.
(6) (a) Zhang, Y.; Desai, A.; Lu, Z.; Hu, G.; Ding, Z.; Wulff, W. D.
Chem.;Eur. J. 2008, 14, 3785–3803. (b) Zhang, Y.; Lu, Z.; Desai, A.;
Wulff, W. D. Org. Lett. 2008, 8, 5429–5432. (c) Zhang, Y.; Lu, Z.; Wulff,
W. D. Synlett 2009, 2715–2739. (d) Hu, G.; Huang, L.; Huang, R. H.;
Wulff, W. D. J. Am. Chem. Soc. 2009, 131, 15615–15617. (e) Mukherjee,
M.; Gupta, A. K.; Lu, Z.; Zhang, Y.; Wulff, W. D. J. Org. Chem. 2010,
75, 5643–5660. (f) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010,
132, 13100–13103. (g) Vetticatt, M. J.; Desai, A. A.; Wulff, W. D. J. Am.
Chem. Soc. 2010, 132, 13104–13107. (h) Ren, H.; Wulff, W. D. Org. Lett.
2010, 12, 4908–4911. (i) Hu, G.; Gupta, A. K.; Huang, R. H.; Mukherjee,
M.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 14669–14675.
r
10.1021/ol202472z
Published on Web 10/11/2011
2011 American Chemical Society