compounds with AIE activities and high solid-state efficiencies
is under way in our lab.
We thank the support from the Research Grants Council of
Hong Kong (603509, HKUST2/CRF/10, and 604711).
Notes and references
1 (a) S. R. Forrest, Org. Electron., 2003, 4, 45; (b) M. Shimizu and
T. Hiyama, Chem.–Asian J., 2010, 5, 1516.
2 (a) M. D. McGehee and A. J. Heeger, Adv. Mater., 2000, 12, 1655;
(b) I. D. W. Samuel and G. A. Turnbull, Chem. Rev., 2007,
107, 1272.
3 (a) J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296;
(b) F. Cicoira and C. Santato, Adv. Funct. Mater., 2007, 17, 3421.
4 X. Y. Liu, D. R. Bai and S. Wang, Angew. Chem., 2006, 118, 5601.
5 S.-L. Lin, L.-H. Chan, R.-H. Lee, M.-Y. Yen, W.-J. Kuo,
C.-T. Chen and R.-J. Jeng, Adv. Mater., 2008, 20, 3947.
6 (a) Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto and T. Ohara,
J. Am. Chem. Soc., 2000, 122, 11021; (b) R.-Y. Wang, W.-L. Jia,
H. Aziz, G. Vamvounis, S. Wang, N.-X. Hu, Z. D. Popovic and
J. A. Coggan, Adv. Funct. Mater., 2005, 15, 1483; (c) H. Zhang,
C. Huo, J. Zhang, P. Zhang, W. Tian and Y. Wang, Chem.
Commun., 2006, 281; (d) M. Kinoshita, H. Kita and Y. Shirota,
Adv. Funct. Mater., 2002, 12, 780.
Fig. 3 (A) PL and EL spectra of TPEDMesB, (B) current efficien-
cy–luminance–voltage plots of its multilayer light-emitting diodes with
a general device configuration of ITO/NPB/X/LiF/Al [X = TPED-
MesB/TPBi (device I), X = TPEDMesB (device II)], and the energy
diagrams of (C) device I and (D) device II.
7 (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu,
H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem.
Commun., 2001, 1740; (b) Y. Hong, J. W. Y. Lam and B. Z. Tang,
Chem. Commun., 2009, 4332; (c) Q. Zeng, Z. Li, Y. Dong, C. Di,
A. Qin, Y. Hong, L. Ji, Z. Zhu, C. K. W. Jim, G. Yu, Q. Li, Z. Li,
Y. Liu, J. Qin and B. Z. Tang, Chem. Commun., 2007, 70;
(d) S. Dong, Z. Li and J. Qin, J. Phys. Chem. B, 2009, 113, 434;
(e) Z. Li, Y. Q. Dong, J. W. Y. Lam, J. Sun, A. Qin, M. Haußler,
Y. P. Dong, H. H. Y. Sung, I. D. Williams, H. S. Kwok and
B. Z. Tang, Adv. Funct. Mater., 2009, 19, 905.
8 W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y. Liu,
H. S. Kwok, Y. Ma and B. Z. Tang, Adv. Mater., 2010, 22, 2159.
9 A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem.
Mater., 2004, 16, 4556, and references therein.
10 (a) D. Izuhara and T. M. Swager, J. Mater. Chem., 2011, 21, 3579;
(b) Z. M. Hudson and S. Wang, Dalton Trans., 2011, 40, 7805, and
references therein.
Table 1 EL performances of TPEDMesB based devicesa
lmax
Device nm
/
Von
V
/
Lmax/cd
mÀ2
PEmax/lm
WÀ1
CEmax/cd
AÀ1
EQE
(%)
I
496,
512
496,
512
6.3 5581
6.3 5170
3.4
3.2
5.78
7.13
2.3
2.7
II
a
Device configuration: ITO/NPB (60 nm)/X/LiF (1 nm)/Al (100 nm);
for device I: X = TPEDMesB (20 nm)/TPBi (40 nm); for device II:
X = TPEDMesB (60 nm); abbreviations: lmax = EL peak, Von
=
turn on voltage, Lmax = maximum luminance, PEmax = maximum
power efficiency, CEmax = maximum current efficiency, and EQE =
maximum external quantum efficiency.
11 Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953.
12 (a) P. Chen, R. A. Lalancette and F. Jakle, J. Am. Chem. Soc.,
2011, 133, 8802; (b) C. D. Entwistle and T. B. Marder, Angew.
Chem., Int. Ed., 2002, 41, 2927; (c) C. D. Entwistle and
T. B. Marder, Chem. Mater., 2004, 16, 4574.
(Lmax = 5170 cd cmÀ2); Moreover, it emits even more
efficiently (CEmax = 7.13 cd AÀ1) due to the lower contact
resistance. Evidently, TPEDMesB is serving as emissive com-
ponent as well as electron-transport material in the EL device,
which should be ascribed to an optimal energy match and
charge-balance of the device, as can be seen from the energy
alignment (Fig. 3C). The bifunctional property of TPED-
MesB helps to simplify device structure, shorten fabrication
process and lower production cost, and moreover enhance the
device performance.
13 H. Doi, M. Kinoshita, K. Okumoto and Y. Shirota, Chem. Mater.,
2003, 15, 1080.
14 (a) A. Wakamiya, K. Mori and S. Yamaguchi, Angew. Chem., Int.
Ed., 2007, 46, 4273; (b) S. Yamaguchi, T. Shirasaka and K. Tamao,
Org. Lett., 2000, 2, 4129; (c) C.-H. Zhao, A. Wakamiya, Y. Inukai
and S. Yamaguchi, J. Am. Chem. Soc., 2006, 128, 15934;
(d) M. Elbing and G. C. Bazan, Angew. Chem., Int. Ed., 2008,
47, 834.
15 A. Lorbach, M. Bolte, H. Li, H.-W. Lerner, M. C. Holthausen,
F. Jakle and M. Wagner, Angew. Chem., Int. Ed., 2009, 48, 4584.
16 N. Matsumi, K. Naka and Y. Chujo, J. Am. Chem. Soc., 1998,
120, 5112.
17 Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho,
Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J.-J. Kim
and J. Yoon, Chem. Commun., 2010, 46, 6512.
18 Z. Yuan, J. C. Collings, N. J. Taylor, T. B. Marder, C. Jardin and
J. F. Halet, J. Solid State Chem., 2000, 154, 5.
19 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891.
20 Z. Zhao, S. Chen, X. Shen, F. Mahtab, Y. Yu, P. Lu, J. W.
Y. Lam, H. S. Kwok and B. Z. Tang, Chem. Commun., 2010,
46, 686.
21 ITO = indium tin oxide; NPB = 1,4-bis[(1-naphthylphenyl)-
amino]biphenyl (hole-transport layer); TPBi = 1,3,5-tris(N-phenyl-
benzimidazol-2-yl)benzene (electron-transport layer).
In summary, through combination of a typical AIE luminogen
TPE and dimesitylboron moiety, a new bluish-green emitter
TPEDMesB with AIE activity and excellent electron-transport
property has been obtained. This molecule has been demon-
strated to be a promising bifunctional material in the fabrication
of a non-doped EL device, giving maximum current efficiency
of 7.13 cd AÀ1. Moreover, the work presented herein shows a
new strategy on creating novel electron-transport high effi-
ciency solid organics. The expansion of applicability of such
strategy to create further multifunctional materials, such as
oxadiazole- and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
(BODIPY)-containing organics, and the study of ambipolar
c
11218 Chem. Commun., 2011, 47, 11216–11218
This journal is The Royal Society of Chemistry 2011