The observed diastereoselectivity may also be explained by the
steric repulsion between one of the diarylhydroxymethyl
groups of (S)-7c and N-benzylmaleimide (A 4 B in Fig. 1).
This explanation of steric repulsion being responsible for the
high diastereoselectivity was supported by the result of
reaction using less hindered N-methylmaleimide, which gave
low diastereoselectivity (dr 2.0 : 1; Table 1, entry 9).
This work was partially supported by a Grant-in-Aid for
Scientific Research from JSPS, MEXT (Japan) and The
Association for the Progress of New Chemistry.
Scheme 3 Reduction of the nitro group on product 4a.
To obtain insight into the transition state structure for the
present enantioselective conjugate addition, we tried X-ray
diffraction analysis of ammonium nitronate prepared from the
chiral bifunctional ammonium bromide of type 7 and nitroacetate.
Several kinds of ammonium nitronates were prepared to obtain
crystals suitable for X-ray diffraction analysis, and we finally
succeeded in obtaining a single-crystal X-ray structure of
(S)-7d (Fig. 1),13 which was prepared from an ammonium
bromide of type 7 possessing diphenylhydroxymethyl groups
(Ar = Ph, X = CH–Me in Table 1, (S)-7) and methyl
2-nitropropanoate. Very importantly, the hydrogen bonding
interaction between the hydroxy group in the binaphthyl unit
and the oxygen of the nitro group is clearly observable in the
crystal structure of (S)-7d.
We are grateful to Dr Hiroyasu Sato (Rigaku Corporation)
for X-ray crystallographic analysis.
Notes and references
1 For reviews on asymmetric synthesis of a,a-disubstituted a-amino
acids, see: (a) C. Cativiela and M. D. Dı
Tetrahedron: Asymmetry, 1998, 9, 3517; (b) C. Cativiela and
M. D. Dıaz-de-Villegas, Tetrahedron: Asymmetry, 2000, 11, 645;
(c) Y. Ohfune and T. Shinada, Eur. J. Org. Chem., 2005, 5125;
(d) H. Vogt and S. Brase, Org. Biomol. Chem., 2007, 5, 406.
´
az-de-Villegas,
´
¨
2 For recent reviews on asymmetric phase-transfer catalysis, see:
(a) T. Ooi and K. Maruoka, Angew. Chem., Int. Ed., 2007,
46, 4222; (b) T. Hashimoto and K. Maruoka, Chem. Rev., 2007,
107, 5656.
3 For representative examples, see: (a) M. J. O’Donnell and S. Wu,
Tetrahedron: Asymmetry, 1992, 3, 591; (b) B. Lygo, J. Crosby and
J. A. Peterson, Tetrahedron Lett., 1999, 40, 8671; (c) T. Ooi,
M. Takeuchi, M. Kameda and K. Maruoka, J. Am. Chem. Soc.,
2000, 122, 5228; (d) T. Ohshima, T. Shibuguchi, Y. Fukuta and
M. Shibasaki, Tetrahedron, 2004, 60, 7743; (e) M. Kitamura,
S. Shirakawa and K. Maruoka, Angew. Chem., Int. Ed., 2005,
44, 1549; (f) S. Arai, F. Takahashi, R. Tsuji and A. Nishida,
Heterocycles, 2006, 67, 495; (g) T. Kano, T. Kumano and
K. Maruoka, Org. Lett., 2009, 11, 2023; (h) T. Kano, T. Kumano,
R. Sakamoto and K. Maruoka, Chem. Sci., 2010, 1, 499.
Based on the X-ray structure of (S)-7d, plausible transition-state
models have been proposed to account for the observed absolute
configuration of conjugate adducts 4 (Fig. 1). In the generation of a
chiral ammonium nitronate derived from a-substituted nitroacetate
and the catalyst (S)-7c under neutral conditions, the nitronate
anion would be stabilized by both the ionic interaction of
ammonium nitronate and the hydrogen bond between the
hydroxy group in catalyst (S)-7c and the nitro group. Then,
N-benzylmaleimide might approach from the front leading to
conjugate adduct 4 with the observed absolute configuration,
which was determined by X-ray analysis of the product 4d.14
4 (a) R. He, S. Shirakawa and K. Maruoka, J. Am. Chem. Soc., 2009,
131, 16620; (b) L. Wang, S. Shirakawa and K. Maruoka, Angew.
Chem., Int. Ed., 2011, 50, 5327.
5 (a) M. Ueda, A. Ono, D. Nakao, O. Miyata and T. Naito,
Tetrahedron Lett., 2007, 48, 841; (b) D. Sikriwal, R. Kant,
P. R. Maulik and D. K. Dikshit, Tetrahedron, 2010, 66, 6167.
6 (a) E. Higashide, T. Kanamaru, H. Fukase and S. Horii,
J. Antibiot., 1985, 38, 296; (b) J. E. Baldwin, R. M. Adlington,
D. W. Gollins and C. J. Schofield, Tetrahedron, 1990, 46, 4733.
7 (a) O. Tsuge, S. Kanemasa and M. Yoshioka, J. Org. Chem., 1988,
53, 1384; (b) C. Najera, M. G. Retamosa and J. M. Sansano, Org.
´
Lett., 2007, 9, 4025; (c) K. V. Kudryavtsev and A. A. Zagulyaeva,
Russ. J. Org. Chem. (Transl. of Zh. Org. Khim.), 2008, 44, 378;
(d) C.-J. Wang, Z.-Y. Xue, G. Liang and Z. Lu, Chem. Commun.,
2009, 2905.
8 (a) X. Wang, M. Kitamura and K. Maruoka, J. Am. Chem. Soc.,
2007, 129, 1038; (b) M. Kitamura, S. Shirakawa, Y. Arimura,
X. Wang and K. Maruoka, Chem.–Asian J., 2008, 3, 1702.
9 X. Wang, Q. Lan, S. Shirakawa and K. Maruoka, Chem.
Commun., 2010, 46, 321.
10 The reason for the positive effect of 4-methylpiperidine skeleton of
(S)-7c is not clear at this stage.
11 Chiral ammonium phenoxides as chiral base catalysts, see:
(a) H. Nagao, Y. Kawano and T. Mukaiyama, Bull. Chem. Soc.
Jpn., 2007, 80, 2406; (b) T. Tozawa, H. Nagao, Y. Yamane and
T. Mukaiyama, Chem.–Asian J., 2007, 2, 123. See also:
(c) D. Uraguchi, K. Koshimoto and T. Ooi, J. Am. Chem. Soc.,
2008, 130, 10878; (d) D. Uraguchi, K. Koshimoto and T. Ooi,
Chem. Commun., 2010, 46, 300.
12 N. V. Yashin, E. B. Averina, Y. K. Grishin, T. S. Kuznetsova and
N. S. Zefirov, Synlett, 2006, 279.
Fig. 1 X-Ray crystal structure of (S)-7d and plausible transition-state
13 CCDC 805745z.
models.
14 CCDC 805746z.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 10557–10559 10559