952
I. Mohammadpoor-Baltork et al. / C. R. Chimie 14 (2011) 944–952
Scheme 4. Decomposition of Bi(NO3)3Á5H2O on heating.
[8] M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Synthesis (2006)
344.
[9] D. Shi, L. Rong, J. Wang, Q. Zhuang, X. Wang, H. Hu, Tetrahedron Lett. 44
(2003) 3199.
[10] M. Dabiri, P. Salehi, M. Baghbanzadeh, Monatsh. Chem. 138 (2007)
1191.
[11] M. Dabiri, P. Salehi, M. Baghbanzadeh, M.A. Zolfigol, M. Agheb, S.
Heydari, Catal. Commun. 9 (2008) 785.
[12] J. Chen, W. Su, H. Wu, M. Liu, C. Jin, Green Chem. 9 (2007) 972.
[13] J. Chen, D. Wu, F. He, M. Liu, H. Wu, J. Ding, W. Su, Tetrahedron Lett. 49
(2008) 3814.
[14] S.B. Mhaske, N.P. Argade, Tetrahedron 62 (2006) 9787.
[15] J.F. Wolfe, T.L. Rathman, M.C. Sleevi, J.A. Campbell, T.D. Greenwood, J.
Med. Chem. 33 (1990) 161.
tively. Consequently, the method reported in this paper
under solvent-free conditions is more convenient for the
oxidation of 2,3-dihydroquinazolin-4(1H)-ones to their
corresponding quinazolin-4(3H)-ones. All these observa-
tions indicate that the presence of oxygen is essential and
Bi(NO3)3Á5H2O has some catalytic effect in this oxidation
reaction. Therefore, a combination of Bi(NO3)3Á5H2O along
with oxygen which is produced by the decomposition of this
reagent and also provided from air acts as actual oxidizing
system in these reactions.
[16] K.V. Tiwari, R.R. Kale, B.B. Mishra, A. Singh, Arkivoc 14 (2008) 27.
[17] J.F. Liu, P. Ye, K. Sprague, K. Sargent, D. Yohannes, C.M. Baldino, C.J.
Wilson, S.C. Ng, Org. Lett. 7 (2005) 3363.
4. Conclusion
[18] T.M. Potewar, R.N. Nadaf, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Synth.
Commun. 35 (2005) 231.
[19] W.L.F. Armarego, Adv. Heterocycl. Chem. 24 (1979) 1.
[20] V. Segarra, M.I. Crespo, F. Pujol, J. Beleta, T. Domenech, M. Miralpeix,
J.M. Palacios, A. Castro, A. Martinez, Bioorg. Med. Chem. Lett. 8 (1998)
505.
[21] M. Akazome, J. Yamamoto, T. Kondo, Y. Watanabe, J. Organomet. Chem.
494 (1995) 229.
[22] L.Y. Zeng, C. Cai, J. Heterocycl. Chem. 47 (2010) 1035.
[23] B. Venkat Lingaiah, G. Ezikiel, T. Yakaiah, G. Venkat Reddy, P. Shanthan
Rao, Synlett. (2006) 2507.
[24] S.E. Lopez, M.E. Rosales, N. Urdaneta, M.V. Godoy, J.E. Charris, J. Chem.
Res. (S) (2000) 258.
[25] J.J. Naleway, C.M.J. Fox, D. Robinhold, E. Terpetschnig, N.A. Olson, R.P.
Haugland, Tetrahedron Lett. 35 (1994) 8569.
[26] B.A. Bhat, D.P. Sahu, Synth. Commun. 34 (2004) 2169.
[27] R. Abdel-Jalil, W. Voelter, M. Saeed, Tetrahedron Lett. 45 (2004) 3475.
[28] G.W. Wang, C.B. Miao, H. Kang, Bull. Chem. Soc. Jpn 79 (2006) 1426.
[29] A.R. Khosropour, I. Mohammadpoor-Baltork, H. Ghorbankhani, Tetra-
hedron Lett. 47 (2006) 3561.
In conclusion, we have demonstrated for the first
time that Bi(NO3)3Á5H2O could be used as an efficient
catalyst for the selective synthesis of 2,3-disubstituted
2,3-dihydroquinazolin-4(1H)-ones and their one-pot
oxidation to quinazolin-4(3H)-ones under solvent-free
conditions. In addition, the advantages including high
yields, short reaction times, easy work-up, green
procedure avoiding toxic organic solvents, and the use
of readily available, inexpensive and relatively non-toxic
catalyst make the present method superior to the
existing methods for the synthesis of quinazolinone
derivatives.
Acknowledgements
[30] H. Suzuki, T. Ikegami, Y. Matano, Synthesis (1997) 249.
[31] N.M. Leonard, L.C. Wieland, R.S. Mohan, Tetrahedron 58 (2002) 8373.
[32] C. Mukhopadhyay, A. Datta, Catal. Commun. 9 (2008) 2588.
[33] I. Mohammadpoor-Baltork, H. Aliyan, A.R. Khosropour, Tetrahedron 57
(2001) 5851.
Financial support of this work by Center of Excellence of
Chemistry and Research Council of University of Isfahan is
gratefully appreciated.
[34] I. Mohammadpoor-Baltork, A.R. Khosropour, Monatsh. Chem. 133
(2002) 189.
Appendix A. Supplementary data
[35] I. Mohammadpoor-Baltork, A.R. Khosropour, S.F. Hojati, Synlett. (2005)
2747.
[36] I. Mohammadpoor-Baltork, A.R. Khosropour, S.F. Hojati, Monatsh.
Chem. 138 (2007) 663.
Supplementary data associated with this article can be
[37] I. Mohammadpoor-Baltork, M.M. Khodaei, K. Nikoofar, Tetrahedron
Lett. 44 (2003) 591.
[38] M.M. Khodaei, I. Mohammadpoor-Baltork, H.R. Memarian, A.R. Khos-
ropour, K. Nikoofar, P. Ghanbary, J. Heterocycl. Chem. 45 (2008) 377.
[39] A.R. Khosropour, I. Mohammadpoor-Baltork, M.M. Khodaei, P.Z. Ghanb-
ary, Z. Naturforsch. 62 (2007) 537.
found,
in
the
online
version,
at
References
[40] V. Le Boisselier, C. Coin, M. Postel, E. Dunach, Tetrahedron 51 (1995)
4991.
[41] S.H. Mashraqtu, C.D. Mudaliar, M.A. Karruk, Synth. Commun. 28 (1998)
939.
[42] S. Samajdar, F. Becker, B.K. Banik, Synth. Commun. 31 (2001) 2691.
[43] S.A. Tymonko, B.A. Nattier, R.S. Mohan, Tetrahedron Lett. 40 (1999)
7657.
[44] V. Le Boisselier, M. Postel, E. Dunach, Chem. Commun. (1997) 95.
[45] S. Rivera, D. Bandyopadhyay, B.K. Banik, Tetrahedron Lett. 50 (2009)
5445.
[1] N.K. Terrett, M. Gardner, D.W. Gordon, R.J. Kobylecki, J. Steele, Tetra-
hedron 51 (1995) 8135.
[2] Y.S. Sadanandam, K.R.M. Reddy, A.B. Rao, Eur. J. Med. Chem. 22 (1987)
169.
[3] G. Bonola, E. Sianesi, J. Med. Chem. 13 (1970) 329.
[4] M.J. Hour, L.J. Huang, S.C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel,
K.H. Lee, J. Med. Chem. 43 (2000) 4479.
[5] J.A. Moore, G.J. Sutherland, R. Sowerby, E.G. Kelly, S. Palermo, W.
Webster, J. Org. Chem. 34 (1969) 887.
[6] M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh, G. Kozehgarya, A.A.
Mohammadi, Tetrahedron Lett. 46 (2005) 6123.
[7] A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Chinese
Chem. Lett. 21 (2010) 550.
[46] N.N. Greenwood, A. Earnshaw, Chemistry of the elements, School of
Chemistry, University of Leeds, UK, second ed., pp. 591.
[47] V.B. Rao, P. Hanumanthu, C.V. Ratnam, Indian J. Chem. 18B (1979) 493.
[48] S.C. Kou, M.J. Hour, L.J. Huang, K.H. Lee, 2002, US 6479499 B1.