10.1002/anie.201914226
Angewandte Chemie International Edition
COMMUNICATION
Chem. Int. Ed. 2018, 57, 5594-5619; c) S. Tang, Y. Liu, A. Lei, Chem
2018, 4, 27-45; d) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev.
2017, 117, 13230-13319; e) E. J. Horn, B. R. Rosen, P. S. Baran, ACS
Cent. Sci. 2016, 2, 302-308; f) R. Francke, R. D. Little, Chem. Soc.
Rev. 2014, 43, 2492-2521; g) S. R. Waldvogel, B. Janza, Angew.
Chem. Int. Ed. 2014, 53, 7122-7123; h) T. R. Cook, D. K. Dogutan, S.
Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev.
2010, 110, 6474-6502, and cited references.
a) T. H. Meyer, L. H. Finger, P. Gandeepan, L. Ackermann, Trends
Chem. 2019, 1, 63-76; b) J. Chen, S. Lv, S. Tian, ChemSusChem 2019,
12, 115-132; c) C. Ma, P. Fang, T.-S. Mei, ACS Catal. 2018, 8, 7179-
7189.
a) Ł. Woźniak, N. Cramer, Trends Chem. 2019; b) P. Gandeepan, L.
Ackermann, Chem 2018, 4, 199-222; c) Y. Park, Y. Kim, S. Chang,
Chem. Rev. 2017, 117, 9247-9301; d) Q.-Z. Zheng, N. Jiao, Chem.
Soc. Rev. 2016, 45, 4590-4627; e) B. Ye, N. Cramer, Acc. Chem. Res.
2015, 48, 1308-1318; f) G. Rouquet, N. Chatani, Angew. Chem. Int.
Ed. 2013, 52, 11726-11743; g) J. Wencel-Delord, F. Glorius, Nat.
Chem. 2013, 5, 369; h) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb,
Chem. Rev. 2010, 110, 824-889; i) L. Ackermann, R. Vicente, A. R.
Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826; j) X. Chen, K. M.
Engle, D.-H. Wang, J.-Q. Yu, Angew. Chem. Int. Ed. 2009, 48, 5094-
5115; k) O. Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009,
42, 1074-1086.
12 by carboxylate-transfer to the ruthena(II)cycle, delivering
ruthenium(IV) intermediate 13, which thereby undergoes rapid
oxidatively-induced reductive elimination to furnish product 2 after
hydrolysis. Lastly, the regeneration of the active catalyst takes
place. The formation of molecular hydrogen as the only
stoichiometric by-product was confirmed by gas-chromatographic
headspace analysis,[12] bearing great potential for paired
electrochemical approaches.[19]
[2]
[3]
[4]
[5]
a) Y. Qiu, J. Struwe, L. Ackermann, Synlett 2019, 30, 1164-1173; b) N.
Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8,
7086-7103; c) Q.-L. Yang, P. Fang, T.-S. Mei, Chin. J. Chem. 2018,
36, 338-352.
a) C. Tian, U. Dhawa, J. Struwe, L. Ackermann, Chin. J. Chem. 2019,
37, 552-556; b) A. Shrestha, M. Lee, A. L. Dunn, M. S. Sanford, Org.
Lett. 2018, 20, 204-207; b) Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J.
Zhang, T.-S. Mei, J. Am. Chem. Soc. 2017, 139, 3293-3298; c) Q. L.
Yang, Y. Q. Li, C. Ma, P. Fang, X. J. Zhang, T. S. Mei, J. Am. Chem.
Soc. 2017, 139, 3293-3298; d) Y.-Q. Li, Q.-L. Yang, P. Fang, T.-S. Mei,
D. Zhang, Org. Lett. 2017, 19, 2905-2908; e) N. Sauermann, T. H.
Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 2017, 139, 18452-
18455, and cited references.
[6]
a) G. G. Dias, T. Rogge, R. Kuniyil, C. Jacob, R. F. S. Menna-Barreto,
E. N. da Silva Júnior, L. Ackermann, Chem. Commun. 2018, 54,
12840-12843; b) Y.-H. Sun, T.-Y. Sun, Y.-D. Wu, X. Zhang, Y. Rao,
Chem. Sci. 2016, 7, 2229-2238; c) Y.-F. Liang, X. Wang, Y. Yuan, Y.
Liang, X. Li, N. Jiao, ACS Catal. 2015, 5, 6148-6152; d) F. Yang, K.
Rauch, K. Kettelhoit, L. Ackermann, Angew. Chem. Int. Ed. 2014, 53,
11285-11288; e) X. Yang, Y. Sun, Z. Chen, Y. Rao, Adv. Synth. Catal.
2014, 356, 1625-1630; f) W. Liu, L. Ackermann, Org. Lett. 2013, 15,
3484-3486; g) F. Yang, L. Ackermann, Org. Lett. 2013, 15, 718-720;
h) P. Y. Choy, F. Y. Kwong, Org. Lett. 2013, 15, 270-273; i) H.-Y.
Zhang, H.-M. Yi, G.-W. Wang, B. Yang, S.-D. Yang, Org. Lett. 2013,
15, 6186-6189; j) V. S. Thirunavukkarasu, L. Ackermann, Org. Lett.
2012, 14, 6206-6209; k) V. S. Thirunavukkarasu, J. Hubrich, L.
Ackermann, Org. Lett. 2012, 14, 4210-4213; l) F. Mo, L. J. Trzepkowski,
G. Dong, Angew. Chem. Int. Ed. 2012, 51, 13075-13079; m) G. Shan,
X. Yang, L. Ma, Y. Rao, Angew. Chem. Int. Ed. 2012, 51, 13070-
13074; n) J. M. Racowski, N. D. Ball, M. S. Sanford, J. Am. Chem. Soc.
2011, 133, 18022-18025; o) T. Yoneyama, R. H. Crabtree, J. Mol.
Catal. A 1996, 108, 35-40. A recent review: p) F. Yang, H. Zhang, X.
Liu, B. Wang, L. Ackermann, Chin. J. Org. Chem. 2019, 39, 59-73, and
cited references.
Scheme 8. Plausible catalytic cycle.
In conclusion, we have devised a novel electrochemical co-
catalytic system for the C–H oxygenation of synthetically useful
amides and ketones by challenging weak-O-coordination. The
versatile
iodine(III)/ruthenium(II)-electro-catalyzed
C–H
functionalization occurred by orchestrating the catalytic
generation of hypervalent iodine(III) reagents with sustainable
electricity as cost-effective terminal oxidant, with the formation of
molecular hydrogen as the sole by-product. Detailed mechanistic
studies by experiment, computation and flow-NMR spectroscopy
provided - in contrast to chemical oxidation - support for a fast and
reversible C–H ruthenation. The ruthenium catalysis also allowed
for the electrochemical remote C–H oxygenations in the absence
of directing groups.
[7]
[8]
a) S. D. Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth.
Catal. 2014, 356, 1461-1479; b) K. M. Engle, T.-S. Mei, M. Wasa, J.-
Q. Yu, Acc. Chem. Res. 2012, 45, 788-802.
a) D. P. Hari, P. Caramenti, J. Waser, Acc. Chem. Res. 2018, 51,
3212-3225; b) X. Li, P. Chen, G. Liu, Beilstein J. Org. Chem. 2018, 14,
1813-1825; c) N. Früh, J. Charpentier, A. Togni, in Hypervalent Iodine
Chemistry (Ed.: T. Wirth), Springer, Cham, 2016, pp. 167-186; d) Y. Li,
D. P. Hari, M. V. Vita, J. Waser, Angew. Chem. Int. Ed. 2016, 55, 4436-
4454; e) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328-
3435; f) F. V. Singh, T. Wirth, Chem. Asian J. 2014, 9, 950-971; g) T.
Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka, Y. Kita,
Tetrahedron 2009, 65, 10797-10815; h) V. V. Zhdankin, Chem. Rev.
2002, 102, 2523-2584.
Acknowledgements
Generous support by the DFG (SPP 1807, Gottfried-Wilhelm-
Leibniz award to LA) is gratefully acknowledged.
Conflict of interest
[9]
R. D. Richardson, T. Wirth, Angew. Chem. Int. Ed. 2006, 45, 4402-
4404.
[10]
a) M. Elsherbini, B. Winterson, H. Alharbi, A. A. Folgueiras-Amador, C.
Génot, T. Wirth, Angew. Chem. Int. Ed. 2019, 58, 9811–9815; b) R.
Francke, Curr. Opin. Electrochem. 2019, 15, 83-88; c) M. Elsherbini,
T. Wirth, Chem. Eur. J. 2018, 24, 13399-13407; d) J. D. Haupt, M.
Berger, S. R. Waldvogel, Org. Lett. 2018, 21, 242-245; e) R. Mockel,
E. Babaoglu, G. Hilt, Chem. Eur. J. 2018, 24, 15781-15785; f) T. Wirth,
W.-C. Gao, Z.-Y. Xiong, S. Pirhaghani, Synthesis 2018, 51, 276-284;
g) T. Broese, R. Francke, Org. Lett. 2016, 18, 5896-5899; h) Y. I. K.
Inoue, S. Nishiyama, Org. Lett. 2010, 12, 436-439; i) D. Kajiyama, K.
Inoue, Y. Ishikawa, S. Nishiyama, Tetrahedron 2010, 66, 9779-9784.
For recent representative references, see: a) A. S. Trita, A. Biafora, M.
Pichette Drapeau, P. Weber, L. J. Gooßen, Angew. Chem. Int. Ed.
2018, 57, 14580-14584; b) J. A. Leitch, C. G. Frost, Chem. Soc. Rev.
The authors declare no conflict of interest.
Keywords: oxygenation • C–H activation • electrocatalysis •
electrochemistry • ruthenium • hypervalent iodine
[11]
[1]
a) K. D. Moeller, Chem. Rev. 2018, 118, 4817-4833; b) A. Wiebe, T.
Gieshoff, S. Mohle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew.
This article is protected by copyright. All rights reserved.