LETTER
Total Synthesis of Urolithin M7
2247
yield (84%).13 Baeyer–Villiger oxidation14 of 20 using
MCPBA/trifluroroacetic acid at room temperature now
proceeded smoothly to afford acetate 21 in 74% yield.
Global deprotection of all three phenolic OH groups was
achieved upon heating 21 in aqueous concentrated HI so-
lution for 30 minutes to afford the natural product 2 in
98% yield. The overall yield of urolithin M7 from the
commercially available salicylaldehyde 11 was 48% over
Trunchado, P.; Ito, H.; Espín, J. C.; Tomás-Barberán, F. A.
J. Agric. Food Chem. 2011, 59, 1152. (e) Ito, H.; Iguchi, A.;
Hatano, T. J. Agric. Food Chem. 2008, 56, 393. (f) Doyle,
B.; Griffiths, L. A. Xenobiotica 1980, 10, 247.
(5) Jeong, S.-J.; Kim, N.-Y.; Kim, D.-H.; Kang, T.-H.; Ahn, N.-
H.; Miyamoto, T.; Higuchi, R.; Kim, Y.-C. Planta Med.
2000, 66, 76.
(6) The Dictionary of Chinese Drugs; Shanghai Scientific and
Technical Publishers: Shougakukan Tokyo, 1985, 875–877.
(7) Bodwell, G. J.; Pi, Z.; Pottie, I. R. Synlett 1999, 477.
(8) Dang, A.-T.; Miller, D. O.; Dawe, L. N.; Bodwell, G. J. Org.
Lett. 2008, 10, 233.
1
eight steps. The H NMR and 13C NMR spectra of 2
matched the reported data from the original isolation pa-
per.5
(9) Experimental Procedure for 9
A solution of dimethoxyacetaldehyde (60 wt% solution in
H2O, 19.6 mL, 0.130 mol) and pyrrolidine (9.76 mL, 0.117
mol) in benzene (150 mL) was heated at reflux with
azeotropic removal of H2O for 1 h. The resulting mixture
was allowed to cool for 10 min, and solid 10 (3.38 g, 13.0
mmol) was added in one portion. The resulting mixture was
heated at reflux for 7 d. The reaction mixture was cooled to
r.t. and then concentrated under reduced pressure. The
residue was taken up in CH2Cl2 (150 mL) and washed with
aq 1 M HCl solution (5 × 50 mL), dried over MgSO4, gravity
filtered, and concentrated under reduced pressure to afford 9
(4.08 g, 100%) as a tan solid: mp 195–196 °C. IR (Nujol):
n = 1735 (s), 1715 (s), 1607 (m), 1121 (s) cm–1. 1H NMR
(500 MHz, CDCl3): d = 8.76 (d, J = 9.3 Hz, 1 H), 8.57 (d,
J = 1.1 Hz, 1 H), 7.80 (d, J = 1.0 Hz, 1 H), 6.81 (dd, J = 9.6,
3.0 Hz, 1 H), 6.76 (d, J = 2.6 Hz, 1 H), 4.08 (s, 3 H), 3.96 (s,
3 H), 3.87 (s, 3 H). 13C NMR (125.8 MHz, CDCl3):
d = 165.6, 161.3, 160.7, 156.4, 152.7, 130.0, 129.1, 128.0,
124.0, 121.3, 116.1, 111.7, 110.0, 101.3, 56.1, 55.3, 52.4.
MS (EI): m/z (%) = 314 (100) [M+], 299 (53), 283 (13), 212
(4), 157 (4). Anal. Calcd for C17H14O6: C, 64.97; H, 4.49.
Found C, 65.03; H, 4.61.
In summary, a concise, high-yielding total synthesis of
urolithin M7 has been completed. The key step was an
IEDDA-driven domino reaction of coumarin-fused diene
10.
Supporting Information for this article is available online at
Acknowledgment
The authors gratefully acknowledge the National Science and Engi-
neering Research Council (NSERC) of Canada for financial support
of this work.
References and Notes
(1) Present address: Department of Chemistry, Mount St.
Vincent University, Halifax, NS, B3M 2J6, Canada.
(2) Clifford, M. N.; Scalbert, A. J. Food Sci. Agric. 2000, 80,
1118.
(10) Zanka, A.; Ohmori, H.; Okamoto, T. Synlett 1999, 1636.
(11) Fétizon, M.; Golfier, M.; Louis, J.-M. Tetrahedron 1975, 31,
171.
(3) (a) Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida,
T.; Hatano, T.; Ito, H.; Hirai, Y. Microbiol. Immunol. 2004,
48, 251. (b) Shito, S.; Shimizu, M.; Mizusima, T.; Ito, H.;
Hatano, T.; Yoshida, T.; Tsuchiya, T. FEMS Microbiol. Lett.
2000, 185, 135. (c) Nakashima, H.; Murakami, T.;
Yamamoto, N.; Sakagami, H.; Tanuma, S.; Hatano, T.;
Yoshida, T.; Okuda, T. Antiviral Res. 1992, 18, 91.
(d) Okuda, T.; Yoshida, T.; Hatano, T. Planta Med. 1989,
55, 117. (e) Okuda, T.; Mori, K.; Hayatsu, H. Chem. Pharm.
Bull. 1984, 32, 3755. (f) Ito, H.; Miyake, M.; Nishitani, E.;
Mori, K.; Hatano, T.; Okuda, T.; Konoshima, T.; Takasaki,
M.; Kozuka, M.; Mukainaka, T.; Tokuda, H.; Nishino, H.;
Yoshida, T. Cancer Lett. 1999, 143, 5. (g) Okabe, S.;
Suganuma, M.; Imayoshi, Y.; Taniguchi, S.; Yoshida, T.;
Fujiki, H. Biol. Pharm. Bull. 2001, 24, 1145.
(4) (a) Cerdá, B.; Llorach, R.; Cerón, J. J.; Espín, J. C.; Tomás-
Barberán, F. A. Eur. J. Nutr. 2003, 42, 18. (b) Cerdá, B.;
Tomás-Barberán, F. A.; Espín, J. C. J. Agric. Food Chem.
2005, 53, 227. (c) Espín, J. C.; González-Barrio, R.; Cerdá,
B.; López-Bote, C.; Tomás-Barberán, F. A. J. Agric. Food
Chem. 2007, 55, 10476. (d) González-Barrio, R.;
(12) For examples of the Dakin reaction, see: (a) Schönberg, A.;
Badran, N.; Starowsky, N. A. J. Chem. Soc. 1995, 1019.
(b) Kabalka, G. W.; Reddy, N. K.; Narayana, C. Tetrahedron
Lett. 1992, 33, 865. (c) Varma, R. S.; Naicker, K. P. Org.
Lett. 1999, 2, 189. (d) Bodwell, G. J.; Hawco, K. M.; Satou,
T. Synlett 2003, 879. (e) Bernini, R.; Coratti, A.;
Provenzano, G.; Fabrizi, G.; Tofani, D. Tetrahedron 2005,
61, 1821.
(13) Grey, R. A. J. Org. Chem. 1984, 49, 2288.
(14) For examples of the Baeyer–Villiger reaction reaction, see:
(a) Suginome, H.; Yamada, S. J. Org. Chem. 1985, 50,
2489. (b) de Azevedo, M. B. M.; Murta, M. M.; Greene, A.
E. J. Org. Chem. 1992, 57, 4567. (c) Kametani, T.; Kotoh,
T.; Fujio, J.; Nogiwa, I.; Tsubuki, M.; Honda, T. J. Org.
Chem. 1988, 53, 1982. (d) Syper, L. Synthesis 1989, 167.
(e) Smissman, E. E.; Li, J. P.; Israili, Z. H. J. Org. Chem.
1968, 33, 4231.
Synlett 2011, No. 15, 2245–2247 © Thieme Stuttgart · New York