P. N. Liu et al. / Tetrahedron Letters 52 (2011) 6113–6117
6117
cause of the existing inseparable rearrangement products. In an ef-
References and notes
fort to expand the substrate scope, styrene 1f was used to react
with amide 2e with the prepared TfOH–SiO2 as the catalyst at en-
hanced catalyst loading (10 mol %), and the product 3s was ob-
tained successfully in 89% yield (Table 3, entry 19). Note that
with in situ adsorbed TfOH–SiO2(H2O) as the catalyst, this reaction
did not proceed. The proposed main reason is that the catalytic
ability of TfOH in H2O might be lowered due to the strong binding
with H2O and that was not strong enough to catalyze the reaction
of the styrene and amide with comparatively low reactivity.
1. (a) Weinreb, S. M. Chem. Rev. 2006, 106, 2531–2549; (b) Shenvi, R. A.; O’Malley,
D. P.; Baran, P. S. Acc. Chem. Res. 2009, 42, 530–541; (c) Nicolaou, K. C.; Chen, J.
S.; Edmonds, D. J.; Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660–719; (d)
Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926–1936.
2. (a) Trost, B. M. Science 1991, 254, 1471–1477; (b) Trost, B. M. Angew. Chem., Int.
Ed. Engl. 1995, 34, 259–281; (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705.
3. (a) Haskell, B. E.; Bowlus, S. B. J. Org. Chem. 1976, 41, 159–160; (b) Roemmele, R.
C.; Rapoport, H. J. Org. Chem. 1988, 53, 2367–2371; (c) Jordis, U.; Sauter, F.;
Siddiqi, S. M.; Kücnburg, B.; Bhattacharya, K. Synthesis 1990, 925–930; (d)
Oppolzer, W.; Bienaymé, H.; Genevois-Borella, A. J. Am. Chem. Soc. 1991, 113,
9660–9661; (e) Parsons, A. F.; Pettifer, R. M. Tetrahedron Lett. 1996, 37, 1667–
1670; (f) Alonso, E.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 14355–14368.
4. (a) Qian, H.; Widenhoefer, R. A. Org. Lett. 2005, 7, 2635–2638; (b) Karshtedt, D.;
Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 12640–12646; (c) McBee, J. L.;
Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2008, 130, 16562–16571.
5. (a) Zhang, J. L.; Yang, C. G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798–1799; (b)
Liu, X. Y.; Li, C.; Che, C. M. Org. Lett. 2006, 8, 2707–2710; (c) Bender, C. F.;
Widenhoefer, R. A. Org. Lett. 2006, 8, 5303–5308; (d) Brouwer, C.; He, C. Angew.
Chem., Int. Ed. 2006, 45, 1744–1747.
6. Taylor, J. G.; Whittall, N.; Hii, K. K. Org. Lett. 2006, 8, 3561–3564.
7. (a) Huang, J. M.; Wong, C. M.; Xu, F. X.; Loh, T. P. Tetrahedron Lett. 2007, 48,
3375–3377; (b) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Chem. Asian
J. 2007, 2, 150–154; (c) Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J.
Am. Chem. Soc. 2006, 128, 1611–1614; (d) Giner, X.; Nájera, C. Synlett 2009,
3211–3213; (e) Yang, L.; Xu, L.-W.; Zhou, W.; Gao, Y.-H.; Sun, W.; Xia, C.-G.
Synlett 2009, 1167–1171; (f) Michaux, J.; Terrasson, V.; Marque, S.; Wehbe, J.;
Prim, D.; Campagne, J. M. Eur. J. Org. Chem. 2007, 2601–2603.
Conclusions
For the first time, the recovery and recycling of TfOH, a versatile
Brønsted acid catalyst, has been realized through directly adding
silica gel as the adsorbent to the catalytic reaction mixture. The
prepared TfOH–SiO2 and the in situ adsorbed TfOH–SiO2(H2O) have
both been successfully applied as the recyclable catalysts for the
hydroamination of alkenes with sulfonamides. The in situ adsorb-
ing of TfOH on silica gel not only avoids the procedure to prepare
TfOH–SiO2, but also demonstrates better reusability than the pre-
pared TfOH–SiO2. For a series of alkenes and various sulfonamides,
the hydroamination reactions afforded moderate to excellent
yields. Our methods have provided the environmentally friendly
protocols possessing the potential for applications in industry.
Moreover, the new protocol of in situ adsorbing TfOH on silica
gel would open a door to directly achieve the efficient recovery
and reusability of various Brønsted acid catalysts and Lewis acid
catalysts through simply adding the wet silica gel as the adsorbent
to the catalytic reaction mixtures.
8. Talluri, S. K.; Sudalai, A. Org. Lett. 2005, 7, 855–857.
9. Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542–
14543.
10. (a) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006,
8, 4175–4178; (b) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.;
Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182; (c) Li, X.; Ye, S.; He, C.; Yu, Z.-X. Eur.
J. Org. Chem. 2008, 4296–4303.
11. Motokura, K.; Nakagiri, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.;
Kaneda, K. Org. Lett. 2006, 8, 4617–4620.
12. Yang, L.; Xu, L. W.; Xia, C. G. Tetrahedron Lett. 2008, 49, 2882–2885.
13. Yang, L.; Xu, L.-W.; Xia, C.-G. Synthesis 2009, 1969–1974.
14. Yadav, J. S.; Reddy, B. V. S.; Raju, A.; Ravindar, K.; Narender, R. Lett. Org. Chem.
2008, 5, 651–654.
Acknowledgments
15. (a) Buchmeiser, M. R. Chem. Rev. 2009, 109, 303–321; (b) Fraile, J. M.; García, J.
I.; Mayoral, J. A. Chem. Rev. 2009, 109, 360–417; (c) Benaglia, M.; Puglisi, A.;
Cozzi, F. Chem. Rev. 2003, 103, 3401–3429.
16. Olah, G. A.; Prakash, G. K. S.; Sommer, J.; Molnar, A. Superacid Chemistry; Wiley,
2009.
17. (a) Mothe, S. R.; Chan, P. W. H. J. Org. Chem. 2009, 74, 5887–5893; (b) Jin, T.;
Himuro, M.; Yamamoto, Y. Angew. Chem., Int. Ed. 2009, 48, 5893–5896; (c) Abid,
M.; Teixeira, L.; Török, B. Org. Lett. 2008, 10, 933–935; (d) Puglisi, A.; Lee, A.-L.;
Schrock, R. R.; Hoveyda, A. H. Org. Lett. 2006, 8, 1871–1874; (e) Elford, T. G.;
Arimura, Y.; Yu, S. H.; Hall, D. G. J. Org. Chem. 2007, 72, 1276–1284.
18. Liu, P. N.; Xia, F.; Wang, Q. W.; Ren, Y. J.; Chen, J. Q. Green Chem. 2010, 12, 1049–
1055.
This work was supported financially by the National Natural
Science Foundation of China (project Nos. 20902020, 21172069),
the Innovation Program of Shanghai Municipal Education Commis-
sion (Project No. 12ZZ050) and the Fundamental Research Funds
for the Central Universities.
Supplementary data
Supplementary data associated with this article can be found, in
19. (a) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1971, 93, 6873–6877; (b) Harris, J. M.;
Shafer, S. G.; Smith, M. R.; McManus, S. P. Tetrahedron Lett. 1979, 20, 2089–
2092.