Journal of the American Chemical Society
Communication
(19) Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan, D. W. J. Am.
Chem. Soc. 2011, 133, 14727.
(20) When equimolar amounts of 1, pyridine, and HBpin were
combined in C6D6, 3 was the only major product with unreacted 1 and
HBpin remaining in the solution.
REFERENCES
■
(1) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223. (b) Lavilla, R.
J. Chem. Soc., Perkin Trans. 1 2002, 1141. (c) Bull, J. A.; Mousseau, J. J.;
Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
(2) Edraki, N.; Mehdipour, A. R.; Khoshneviszadeh, M.; Miri, R. Drug
Discovery Today 2009, 14, 1058.
(3) (a) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13,
1084. (b) Ouellet, S. G.; Walij, A. M.; MacMillan, D. W. C. Acc. Chem.
Res. 2007, 40, 1327. (c) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41,
2498.
(4) For examples of metal-catalyzed 1,4-hydrogenation of Hantzsch
ester or NAD(P) derivatives, see: (a) Abril, O.; Whitesides, G. M. J. Am.
Chem. Soc. 1982, 104, 1552. (b) Wagenknecht, P. S.; Penney, J. M.;
Hembre, R. T. Organometallics 2003, 22, 1180. (c) Shaw, A. P.; Ryland,
B. L.; Franklin, M. J.; Norton, J. R.; Chen, J. Y.-C.; Hall, M. L. J. Org.
Chem. 2008, 73, 9668. (d) Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.;
Wang, D.-S.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2011, 133, 16432.
(e) Maenaka, Y.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 2012, 134,
367.
(21) (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
(b) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. Chem. A 2006, 110, 5121.
(22) When HBpin and pyrdine were stoichiometrically mixed in C6D6,
the 1H and 11B NMR spectra remained unchanged. See also refs 7and 9.
(23) The free energy barrier for direct hydride transfer in IM2 to afford
1 and 2a was calculated to be 10.9 kcal mol−1. Therefore, the formation
of the boronium intermediate 3 is favored, which is in agreement with
our experimental observation.
(24) Blank experiments, which were carried out without catalyst in
C6D6 solution at 80 °C, showed no reduction of pyridines. When
equimolar of HBpin and pyridines were heated at 80 °C under neat
conditions, mixtures of 1,4- and 1,2-dihydropyridine derivatives were
observed after 16 h (see Table S1).
(25) Barbeyon, R.; Benedetti, E.; Cossy, J.; Vasseur, J.-J.; Arseniyadis,
S.; Smietana, M. Tetrahedron 2014, 70, 8431.
(5) Gutsulyak, D. V.; van der Est, A.; Nikonov, G. I. Angew. Chem., Int.
Ed. 2011, 50, 1384.
(26) Wobser, S. D.; Stephenson, C. J.; Delferro, M.; Marks, T. J.
Organometallics 2013, 32, 1317.
(27) Zhang, Z.; Edkins, R.; Nitsch, J.; Fucke, K.; Steffen, A.;
Longobardi, L. E.; Stephan, D. W.; Lambert, C.; Marder, T. B. Chem.
Sci. 2015, 6, 308.
(6) Konigs, C. D. F.; Klare, H. F. T.; Oestreich, M. Angew. Chem., Int.
̈
Ed. 2013, 52, 10076.
(7) Arrowsmith, M.; Hill, M. S.; Hadlington, T.; Kociok-Kohn, G.
Organometallics 2011, 30, 5556.
(8) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012,
134, 3699.
(9) Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J.
Nat. Chem. 2014, 6, 1100.
̈
(28) pKa = 0.90 for 2-bromopyridine and pKa = 2.84 for 3-
bromopyridine for comparison. See: Bjerrum, J.; Schwarzenbach, G.;
Sillen
(29) Sole,
(30) Birch, A.; Karakhanov, E. A. J. Chem. Soc., Chem. Commun. 1975,
480.
́
, L. G. Stability Constants; Chemical Society: London, 1958.
́
C.; Fernandez, E. Angew. Chem., Int. Ed. 2013, 52, 11351.
́
(10) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W.
Science. 2006, 314, 1124.
(31) Hantzsch, A. Chem. Ber. 1881, 14, 1637.
(32) Fowler, F. W. J. Org. Chem. 1972, 37, 1321.
(11) For reviews on metal-free hydrogenation, see: (a) Stephan, D. W.;
Erker, G. Angew. Chem., Int. Ed. 2010, 49, 46. (b) Stephan, D. W.; Erker,
G. Chem. Sci. 2014, 5, 2625. (c) Stephan, D. W. Org. Biomol. Chem. 2012,
10, 5740. (d) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552.
(e) Hounjet, L.; Stephan, D. W. Org. Process Res. Dev. 2014, 18, 385.
(f) Feng, X.; Du, H. Tetrahedtron Lett. 2014, 55, 6959. (g) Stephan, D.
W. Acc. Chem. Res. 2015, 48, 306.
(12) For examples of metal-free hydrosilylation, see: (a) Parks, D. J.;
Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440. (b) Blackwell, J. M.;
Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887.
(c) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65,
3090. (d) Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. Org.
Lett. 2000, 2, 3921. (e) Gevorgyan, V.; Ruben, M.; Benson, S.; Liu, J.-X.;
Yamamoto, Y. J. Org. Chem. 2000, 65, 6179. (f) Rendler, S.; Oesterich,
M. Angew. Chem., Int. Ed. 2008, 47, 5997. (g) Hermeke, J.; Mewald, M.;
Oesterich, M. J. Am. Chem. Soc. 2013, 135, 17537. (h) Simonneau, A.;
Oesterich, M. Angew. Chem., Int. Ed. 2013, 52, 10076. (i) Peres, M.;
́
Hounjet, L. J.; Caputo, C. B.; Dobrovetsky, R.; Stephan, D. W. J. Am.
Chem. Soc. 2013, 135, 18308.
(13) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 12968.
(14) Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010,
46, 4884.
(15) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. J. Am. Chem. Soc.
2012, 134, 17384.
(16) For other examples of metal-free hydrogenation or hydro-
silylation of quinolines, see: (a) Ero
̋ ́
s, G.; Nagy, K.; Mehi, H.; Papai, I.;
Nagy, P.; Kiraly, P.; Tarkanyi, G.; Soo
́
́
́
̋
s, T. Chem.Eur. J. 2012, 18, 574.
(b) Mahdi, T.; del Castillo, J. N.; Stephan, D. W. Organometallics 2013,
32, 1971. (c) Gandhamsetty, N.; Joung, S.; Park, S.-W.; Park, S.; Chang,
S. J. Am. Chem. Soc. 2014, 136, 16780.
(17) (a) Lu, Z.; Cheng, Z.; Chen, Z.; Weng, L.; Li, Z. H.; Wang, H.
Angew. Chem., Int. Ed. 2011, 50, 12227. (b) Ye, H.; Lu, Z.; You, D.; Chen,
Z.; Li, Z. H.; Wang, H. Angew. Chem., Int. Ed. 2012, 51, 12047. (c) Lu, Z.;
Wang, Y.; Liu, J.; Lin, Y.-j.; Li, Z. H.; Wang, H. Organometallics 2013, 32,
6753.
(18) Ashley, A. E.; Herrington, T. T.; Wildgoose, G. G.; Zaher, H.;
Thompson, A. L.; Rees, N. H.; Kramer, T.; O’Hare, D. Chem. Commun.
̈
2008, 4303.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX