Journal of the American Chemical Society
Communication
(14) (a) For an early report, see: Netherton, M. R.; Dai, C.;
Notes
Neuschutz, K.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 10099. (b) For
̈
The authors declare no competing financial interest.
a recent report and leading references, see: Liang, Y.; Fu, G. C. J. Am.
Chem. Soc. 2015, 137, 9523.
ACKNOWLEDGMENTS
(15) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693
(nickel catalyst; primary, secondary, and tertiary electrophiles).
(16) For contemporaneous work by others, see: (a) Yang, C.-T.;
Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.;
Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem., Int.
Ed. 2012, 51, 528 (copper catalyst; primary and secondary
electrophiles). (b) Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890
(copper catalyst; primary and secondary electrophiles). (c) Yi, J.; Liu,
J.-H.; Liang, J.; Dai, J.-J.; Yang, C.-T.; Fu, Y.; Liu, L. Adv. Synth. Catal.
2012, 354, 1685 (palladium and nickel catalysts; primary and
secondary electrophiles). (d) Joshi-Pangu, A.; Ma, X.; Diane, M.;
Iqbal, S.; Kribs, R. J.; Huang, R.; Wang, C.-Y.; Biscoe, M. R. J. Org.
Chem. 2012, 77, 6629 (palladium catalyst; primary electrophiles).
(17) Hemeon, I.; Singer, R. D. In Science of Synthesis; Theime:
Stuttgart, Germany, 2002; Vol. 4, Chapter 4.4.9.
(18) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
(19) Preliminary studies indicate that a lower yield of cross-coupling
product is observed if less than ∼20 equiv of DMA is present. Possible
roles for DMA include binding to nickel or increasing the dielectric
constant of the reaction medium.
(20) Notes: (a) Small amounts of products derived from hydro-
debromination of the electrophile or from homocoupling of the
nucleophile are sometimes observed. (b) Under our standard
conditions, the addition of ligand 1 is deleterious for cross-coupling.
(21) We have not yet attempted to separately optimize the yield for
this family of electrophiles.
■
Support has been provided by the National Institutes of Health
(National Institute of General Medical Sciences, R01-
GM62871) and the Gordon and Betty Moore Foundation
(Caltech Center for Catalysis and Chemical Synthesis). We
thank Dr. Alexander S. Dudnik for preliminary observations
and Dr. Junwon Choi for helpful discussions.
REFERENCES
■
(1) Handbook of Reagents for Organic Synthesis: Reagents for Silicon-
Mediated Organic Synthesis; Fuchs, P. L., Ed.; Wiley: Chichester, U.K.,
2011.
(2) Organosilicon Chemistry V: From Molecules to Materials; Auner, N.,
Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(3) Flusilazole, silthiofam, and simeconazole are examples of
tetraorganosilanes that are employed in the agrochemical industry.
(4) For a recent review with leading references, see: Franz, A. K.;
Wilson, S. O. J. Med. Chem. 2013, 56, 388.
(5) The development of new strategies for the synthesis of
organosilanes continues to be an active area of research. For an
example of the synthesis of organosilanes (allylsilanes and vinylsilanes)
through a silyl-Heck approach, see: McAtee, J. R.; Martin, S. E. S.;
Ahneman, D. T.; Johnson, K. A.; Watson, D. A. Angew. Chem., Int. Ed.
2012, 51, 3663.
(6) For overviews of recent advances as well as leading references,
see: (a) Nakajima, Y.; Shimada, S. RSC Adv. 2015, 5, 20603.
(b) Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440.
(7) (a) For a recent example of isomerization during the
hydrosilylation of internal olefins, see: Buslov, I.; Becouse, J.; Mazza,
S.; Montandon-Clerc, M.; Hu, X. Angew. Chem., Int. Ed. 2015, 54,
14523. (b) For an example of poor regioselectivity in the
hydrosilylation of internal olefins, see: Benkeser, R. A.; Muench, W.
C. J. Am. Chem. Soc. 1973, 95, 285.
(8) For leading references, see: Science of Synthesis; Theime: Stuttgart,
Germany, 2002; Vol. 4, Chapter 4.4.
(9) We are aware of only a few examples, most of which proceed in
low yield and/or involve special (reactive) coupling partners. See:
(22) For selected examples of cross-couplings of unactivated tertiary
alkyl halides, see: (a) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew.
Chem., Int. Ed. 2002, 41, 4137. (b) Mitamura, Y.; Asada, Y.; Murakami,
K.; Someya, H.; Yorimitsu, H.; Oshima, K. Chem. - Asian J. 2010, 5,
1487. (c) Reference 15. (d) Zultanski, S. L.; Fu, G. C. J. Am. Chem.
Soc. 2013, 135, 624. (e) Wu, X.; See, J. W. T.; Xu, K.; Hirao, H.;
Roger, J.; Hierso, J.-C.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53,
13573. Also see: (f) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am.
Chem. Soc. 2015, 137, 11562.
(23) For recent discussions and leading references, see: (a) Liang, Y.;
Fu, G. C. Angew. Chem., Int. Ed. 2015, 54, 9047. (b) Schley, N. D.; Fu,
G. C. J. Am. Chem. Soc. 2014, 136, 16588.
(24) We have observed similar trends in nickel-catalyzed borylations
of unactivated alkyl bromides (see ref 15).
́ ́
(a) Brefort, J.-L.; Corriu, R. J. P.; Guerin, C.; Henner, B. J. L.; Man, W.
W. C. W. C. Organometallics 1990, 9, 2080. (b) Itami, K.; Terakawa,
K.; Yoshida, J.-i.; Kajimoto, O. J. Am. Chem. Soc. 2003, 125, 6058 (one
example reported on page S6 of the Supporting Information, 22%
yield). (c) Eisch, J. J.; Gupta, G. J. Organomet. Chem. 1979, 168, 139
(cyclopropyl-MgBr as the nucleophile, 37% yield). (d) Kang, K.-T.;
Yoon, U. C.; Seo, H. C.; Kim, K. N.; Song, H. Y.; Lee, J. C. Bull.
Korean Chem. Sci. 1991, 12, 57 (a silacyclobutane as the electrophile).
(10) For an example of an unsuccessful coupling (0% yield), see:
Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Angew. Chem.,
Int. Ed. 2008, 47, 5833.
(25) Henry-Riyad, H.; Montanari, F.; Quici, S.; Studer, A.; Tidwell,
T. T.; Vogler, T. In Handbook of Reagents for Organic Synthesis; Fuchs,
P. L., Ed.; Wiley: Chichester, U.K., 2013; pp 620−626.
(11) For selected examples, see: (a) Lefort, M.; Simmonet, C.; Birot,
M.; Deleris, G.; Dunogues, J.; Calas, R. Tetrahedron Lett. 1980, 21,
1857. (b) Tobisu, M.; Kita, Y.; Ano, Y.; Chatani, N. J. Am. Chem. Soc.
2008, 130, 15982. (c) Vyas, D. J.; Oestreich, M. Angew. Chem., Int. Ed.
2010, 49, 8513. (d) Hazra, C. K.; Oestreich, M. Org. Lett. 2012, 14,
4010. (e) Zarate, C.; Martin, R. J. Am. Chem. Soc. 2014, 136, 2236.
(f) Huang, Z.-D.; Ding, R.; Wang, P.; Xu, Y.-H.; Loh, T.-P. Chem.
Commun. 2016, 52, 5609.
(12) Eaborn, C.; Griffiths, R. W.; Pidcock, A. J. Organomet. Chem.
1982, 225, 331. After the submission of our study, a report of copper-
catalyzed silylation of primary alkyl triflates was described. See:
Scharfbier, J.; Oestreich, M. Synlett 2016, 27, 1274.
(13) For related work, see: (a) Copper-catalyzed couplings that
proceed in low (<40%) yield: Okuda, Y.; Morizawa, Y.; Oshima, K.;
Nozaki, H. Tetrahedron Lett. 1984, 25, 2483. (b) Rhodium-catalyzed
substitution of a cyano group with a silyl group (48% yield): ref 11b.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX