oxidative lactonisations of electron rich aromatics.7c While the
origin of this difference in reactivity is not obvious it may
relate to the annulation in our substrates disfavouring
formation of the spirocyclic products.
V. V. Zhdankin, Org. Lett., 2010, 12, 4644; For hydrazone
rearrangement see: (d) K. E. Lutz and R. J. Thomson, Angew.
Chem., Int. Ed., 2011, 50, 4437.
7 For a useful introduction see: (a) T. Dohi, M. Ito, N. Yamaoka,
K. Morimoto, H. Fujioka and Y. Kita, Tetrahedron, 2009,
65, 10797 and references therein. For selected examples see:
(b) Y. Tamura, T. Yakura, J.-i. Haruta and Y. Kita, J. Org. Chem.,
1987, 52, 3927; (c) K. Hata, H. Hamamoto, Y. Shiozaki and
Y. Kita, Chem.Commun., 2005, 2465; For an account on phenolic
Vinylogous esters are valuable synthetic building blocks,
with well-defined reactivity, thereby allowing ready access to
diversely functionalised materials.12 The chemistry developed
herein expands the utility of these materials, providing facile
approaches to spirofuran 2 and benzopyran 3 heterocycles.
Key mechanistic events involve oxidation of the electron
rich aromatic ring, by the in situ generated hypervalent
iodonium reagent, and trapping with the electron rich vinylogous
ester. The use of catalytic iodobenzene contributed significant
advantages over the stoichiometric variant of this reaction,
and illustrates a new catalytic hypervalent iodine mediated
reaction. Future studies aim to exploit this novel mode of
cyclisation to rapidly access complex polycyclic oxygen
heterocycles in the context of total synthesis and medicinal
chemistry.
cyclisations see: (d) S. Quideau, L. Pouysegu and D. Deffieux,
´
Synlett, 2008, 4, 467; With olefinic nucleophiles see:
(e) S. Desjardins, J.-C. Andrez and S. Canesi, Org. Lett., 2011,
13, 3406; (f) J.-C. Andrez, M.-A. Giroux, J. Lucien and S. Canesi,
Org. Lett., 2010, 12, 4368; For a novel double annulation see:
(g) J. L. Frie, C. S. Jeffrey and E. J. Sorensen, Org. Lett., 2009,
11, 5394.
8 The reactivity of hypervalent iodonium reagents is likened to that
of Hg(III) Pb(IV) and Tl(III). In addition their preparation can be
achieved in a highly efficient fashion, for recent advances in the
preparation of diaryl iodonium reagents see: (a) T. Dohi, M. Ito,
K. Morimoto, Y. Minamitsuji, N. Takenaga and Y. Kita, Chem.
Commun., 2007, 4152; (b) A. A. Zagulyaeva, M. S. Yusubov and
V. V. Zhdankin, J. Org. Chem., 2010, 75, 2119; (c) S. Schafer and
¨
T. Wirth, Angew. Chem., Int. Ed., 2010, 49, 2786; For chiral diaryl
iodoniums see ; (d) N. Jalalian and B. Olofsson, Tetrahedron, 2010,
66, 5793.
9 The oxidative cyclisation of unmasked 1,3-dicarbonyls has been
performed and results in C–C bond formation: M. Arisawa,
N. G. Ramesh, M. Nakajima, H. Tohma and Y. Kita, J. Org.
Chem., 2001, 66, 59.
10 For benzopyrans see: (a) R. M. Jones, C. Selenski and T. R.
R. Pettus, J. Org. Chem., 2002, 67, 6911 and references therein, for
spirofurans see: (b) S. Rosenberg and R. Leino, Synthesis, 2009,
16, 2651.
The application of non-traditional nucleophiles in oxidative
cyclisation is an emerging theme.7 The study presented herein
demonstrates novel deployment of vinylogous esters as
electron-rich aprotic nucleophiles. The development of alternate
nucleophiles for oxidative transformations has great potential
to deliver useful transformations for rapid skeletal complexity
generation, and is a subject of ongoing studies within our
laboratories.
11 For reviews on catalytic hypervalent iodine chemistry see:
(a) R. D. Richardson and T. Wirth, Angew. Chem., Int. Ed.,
2006, 45, 4402; (b) M. Ochiai and K. Miyamoto, Eur. J. Org.
Chem., 2008, 4229; (c) T. Dohi and Y. Kita, Chem. Commun., 2009,
2073; (d) M. Ngatimin and D. W. Lupton, Aust. J. Chem., 2009,
63, 653.
12 For general procedures see: (a) G. Stork and R. Danheiser, J. Org.
Chem., 1973, 38, 1775; For 3a see: (b) M. Fagnoni, P. Schmoldt,
T. Kirschberg and J. Mattay, Tetrahedron, 1998, 54, 6427.
13 For a review on the role of fluorinated solvents in oxidation
Notes and references
1 For reviews see (a) V. V. Zhdankin and P. J. Stang, Chem. Rev.,
2008, 108, 5299; (b) J. P. Brand, D. F. Gonzalez, S. Nicolai and
´
J. Waser, Chem. Commun., 2011, 47, 102 and references therein.
2 For leading references see (a) C. G. Espino and J. Du Bois, Angew.
Chem., Int. Ed., 2001, 40, 598; (b) C. G. Espino, K. W. Fiori,
M. Kim and J. Du Bois, J. Am. Chem. Soc., 2004, 126, 15378.
3 For leading references see: (a) A. R. Dick, K. L. Hull and
M. S. Sanford, J. Am. Chem. Soc., 2004, 126, 2300;
(b) E. J. Alexanian, C. Lee and E. J. Sorensen, J. Am. Chem.
Soc., 2005, 127, 7690; (c) G. Liu and S. S. Stahl, J. Am. Chem. Soc.,
2006, 128, 7179.
reactions see: (a) J.-P. Begue, D. Bonnet-Delpon and B. Crousse,
´ ´
Synlett, 2004, 18; For early applications with hypervalent iodo-
niums see: (b) Y. Kita, H. Tohma, M. Inagaki, K. Hatanaka and
T. Yakura, Tetrahedron Lett., 1991, 32, 4321; (c) Y. Kita,
H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh,
H. Sakurai and S. Oka, J. Am. Chem. Soc., 1994, 116, 3684.
14 For leading references on catalytic hypervalent iodonium reactions
see: (a) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto,
H. Tohma and Y. Kita, Angew. Chem., Int. Ed., 2005, 44, 6193;
(b) M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda and
K. Miyamoto, J. Am. Chem. Soc., 2005, 127, 12244.
4 For leading references see: D. Kalyani, N. Deprez, L. V. Desai and
M. S. Sanford, J. Am. Chem. Soc., 2005, 127, 7330.
5 Recent selected examples of cyclisations with oxygen nucleophilies:
(a) A. C. Boye, D. Meyer, C. K. Ingison, A. N. French and
T. Wirth, Org. Lett., 2003, 5, 2157; (b) R. S. Vasconcelos,
L. F. Silva, Jr and A. Giannis, J. Org. Chem., 2011, 76, 1499;
For tandem oxo-cyclisation coupling ; (c) S. Nicolai, S. Erard,
15 For selected examples of the catalytic application of aryl iodides in
hypervalent iodine mediated reactions see: (a) D. C. Braddock,
G. Cansell and S. A. Hermitage, Chem. Commun., 2006, 2483;
(b) T. Dohi, A. Maruyama, N. Takenaga, K. Senami,
Y. Minamitsuji, H. Fujioka, S. B. Caemmerer and Y. Kita, Angew.
Chem., Int. Ed., 2008, 47, 3787; (c) S. M. Altermann,
R. D. Richardson, T. K. Page, R. K. Schmidt, E. Holland,
U. Mohammed, S. M. Paradine, A. N. French, C. Richter,
A. M. Bahar, B. Witulski and T. Wirth, Eur. J. Org. Chem.,
2008, 5315; (d) S. Quideau, G. Lyvinec, M. Marguerit,
K. Bathany, A. Ozanne-Beaudenon, T. Buffeteau, D. Cavagnat
D. F. Gonzalez and J. Waser, Org. Lett., 2010, 12, 384;
´
For selected examples of spirolactam formation see:
(d) D. J. Wardrop and W. Zhang, Org. Lett., 2001, 3, 2353;
(e) D. J. Wardrop and A. Basak, Org. Lett., 2001, 3, 1053;
(f) T. Dohi, A. Maruyama, Y. Minamitsuji, N. Takenaga and
Y. Kita, Chem. Commun., 2007, 1224; For oxyamination;
(g) D. J. Wardrop, E. G. Bowen, R. E. Forslund, A. D. Sussman
and S. L. Weerasekera, J. Am. Chem. Soc., 2010, 132, 1188;
(h) H. M. Lovick and F. E. Michael, J. Am. Chem. Soc., 2010,
132, 1249 and references therein.
6 For Wagner–Meerwein Rearrangements (a) K. C. Guerard,
´
and A. Chenede, Angew. Chem., Int. Ed., 2009, 48, 4605; M. Fujita,
´ ´
C. Chapelle, M.-A. Giroux, C. Sabot, M.-A. Beaulieu,
N. Achache and S. Canesi, Org. Lett., 2009, 11, 4756;
(b) H. Fujioka, H. Komatsu, T. Nakamura, A. Miyoshi,
K. Hata, J. Ganesh, K. Murai and Y. Kita, Chem. Commun.,
Y. Yoshida, K. Miyata, A. Wakisaka and T. Sugimura, Angew.
Chem., Int. Ed., 2010, 49, 7068; (e) M. Uyanik, T. Yasui and
K. Ishihara, Angew. Chem., Int. Ed., 2010, 49, 2715.
16 The location of the radical cation in intermediate II corresponds to
either of the two aromatic rings.
2010,
46,
4133;
For
Hofman
rearrangement
see:
(c) A. A. Zagulyaeva, C. T. Banek, M. S. Yusbov and
c
11780 Chem. Commun., 2011, 47, 11778–11780
This journal is The Royal Society of Chemistry 2011