(c) M. D. Farnos, B. A. Woods and B. B. Wayland, J. Am. Chem.
Soc., 1986, 108, 3659; (d) J. P. Collman, P. J. Brothers, L. McElwee-
White and E. Rose, J. Am. Chem. Soc., 1985, 107, 6110.
4 X. Fu and B. B. Wayland, J. Am. Chem. Soc., 2005, 127, 16460.
5 B. B. Wayland, B. A. Woods and V. M. Minda, J. Chem. Soc.,
Chem. Commun., 1982, 634.
6 H. W. Bosch and B. B. Wayland, J. Chem. Soc., Chem. Commun.,
1986, 900.
7 (a) G. F. Bradley and S. R. Stobart, J. Chem. Soc., Dalton Trans.,
1974, 264; (b) R. D. Adams, F. A. Cotton, W. R. Cullen,
D. L. Hunter and L. Mihichuk, Inorg. Chem., 1975, 14, 1395;
(c) J. A. Connor, P. D. Rose and R. M. Turner, J. Organomet.
Chem., 1973, 55, 111; (d) S. Aldridge and A. J. Downs, Chem. Rev.,
2001, 101, 3305; (e) A. J. Downs, Coord. Chem. Rev., 1999, 189, 59;
(f) E. C. Ashby, J. Organomet. Chem., 1980, 200, 1.
Fig. 3 The structure of 8ꢂacetone.
8 (a) M. Stender, A. D. Phillips, R. J. Wright and P. P. Power,
Angew. Chem., Int. Ed., 2002, 41, 1785; (b) L. Pu, A. D. Phillips,
A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead and
P. P. Power, J. Am. Chem. Soc., 2003, 125, 11626; (c) G. H. Spikes,
Y. Peng, J. C. Fettinger and P. P. Power, Z. Anorg. Allg. Chem.,
2006, 632, 1005; (d) R. S. Simons, L. Pu, M. M. Olmstead and
P. P. Power, Organometallics, 1997, 16, 1920; (e) X. Wang,
Y. Peng, M. M. Olmstead, J. C. Fettinger and P. P. Power,
J. Am. Chem. Soc., 2009, 131, 14164; (f) X. Wang, Y. Peng,
M. M. Olmstead, H. Hope and P. P. Power, J. Am. Chem. Soc.,
2010, 132, 13150; (g) R. S. Simons and P. P. Power, J. Am. Chem.
Soc., 1996, 118, 11966; (h) X. Wang, Y. Peng, Z. Zhu,
J. C. Fettinger, P. P. Power, J. Guo and S. Nagase, Angew. Chem.,
Int. Ed., 2010, 49, 4593; (i) G. H. Spikes, J. C. Fettinger and
P. P. Power, J. Am. Chem. Soc., 2005, 127, 12232; (j) C. Cui,
M. M. Olmstead and P.P. Power, J. Am. Chem. Soc., 2004,
126, 5062; (k) C. Cui, M. Brynda, M. M. Olmstead and
P. P. Power, J. Am. Chem. Soc., 2004, 126, 6510; (l) X. Wang,
Z. Zhu, Y. Peng, H. Lei, J. C. Fettinger and P. P. Power, J. Am.
Chem. Soc., 2009, 131, 6912; (m) Y. Peng, J.-D. Guo, B. D. Ellis,
Z. Zhu, J. C. Fettinger, S. Nagase and P. P. Power, J. Am. Chem.
Soc., 2009, 131, 16272.
Scheme 2 Reaction pathways of (TPFC)Ge-H with formaldehyde,
1-pentene and methyl iodide.
9 (a) A. Jana, G. Tavcar, H. W. Roesky and M. John, Dalton Trans.,
2010, 9487; (b) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel,
G. Schwab and D. Stalke, J. Am. Chem. Soc., 2009, 131, 1288;
(c) A. Jana, H. W. Roesky and C. Schulzke, Dalton Trans., 2010,
132; (d) A. Jana, S. S. Sen, H. W. Roesky, C. Schulzke, S. Dutta
and S. K. Pati, Angew. Chem., Int. Ed., 2009, 48, 4246.
methanol. Previously, the porphyrin rhodium hydride complex
(Por)Rh-H was reported to be deprotonated to form the RhI
porphyrin anion [(Por)Rh]ꢀ which functioned as a nucleophile to
react with organic halides, olefins and alkynes to produce metal
alkyl complexes.15
10 (a) S. Nardis, F. Mandoj, R. Paolesse, F. R. Fronczek,
K. M. Smith, L. Prodi, M. Montalti and G. Battistini, Eur. J.
Inorg. Chem., 2007, 2345; (b) M. Mastroianni, W. Zhu,
M. Stefanelli, S. Nardis, F. R. Fronczek, K. M. Smith, Z. Ou,
K. M. Kadish and R. Paolesse, Inorg. Chem., 2008, 47, 11680;
(c) M. Stefanelli, F. Mandoj, M. Mastroianni, S. Nardis,
P. Mohite, F. R. Fronczek, K. M. Smith, K. M. Kadish,
X. Xiao, Z. Ou, P. Chen and R. Paolesse, Inorg. Chem., 2011,
50, 8281; (d) L. Simkhovich, A. Mahammed, I. Goldberg and
Z. Gross, Chem.–Eur. J., 2001, 7, 1041.
Reactions of late transition metal hydride complexes with
unsaturated substrates play a crucial role in many important
catalytic processes. We have observed that a main group hydride
complex demonstrates parallel reactivity to transition metal
hydrides with aldehydes, olefins and alkyl halides to form
a-hydroxyalkyl and alkyl complexes. This research demonstrates
that the cheaper main-group metal complexes can emulate the
reactivity of transition metal complexes although their electronic
structures, orbitals and bonding properties are quite different.
The main group metal hydrides may function like transition
metal hydrides and find wide application in hydrogenations,
hydroformylation, and related transformations. Further research
focused on the mechanistic study of the substrate reactions of
corrole germanium hydrides is under investigation.
11 Typical IR absorption of Ge-H falls in the range of 1953–2175 cmꢀ1
.
(a) J. E. Bender IV, K. E. Litz, D. Giarikos, N. J. Wells,
M. M. Banaszak Holl and J. W. Kampf, Chem.–Eur. J., 1997,
3, 1793; (b) A. Castel, P. Riviere, J. Satge and H. Y. Ko, Organo-
´
metallics, 1990, 9, 205; (c) F. Riedmiller, G. L. Wegner, A. Jockisch
and H. Schmidbaur, Organometallics, 1999, 18, 4317;
(d) E. J. Kupchik, in Organotin Compounds, ed. A. K. Sawyer, Marcel
Dekker, New York, vol 1, 1971, pp. 7.
12 (a) R. Whyman, A. P. Wright, J. A. Iggo and B. T. Heaton,
J. Chem. Soc., Dalton Trans., 2002, 771; (b) D. R. Fahey, J. Am.
Chem. Soc., 1981, 103, 136; (c) J. A. Roth and M. Orchin,
J. Organomet. Chem., 1978, 172, C27.
We are grateful for support by NSFC Grant 20801002.
Notes and references
13 (a) J. A. Gladysz, J. C. Selover and C. E. Strouse, J. Am. Chem.
Soc., 1978, 100, 6766; (b) D. L. Johnson and J. A. Gladysz, Inorg.
Chem., 1981, 20, 2508.
14 (a) G. D. Vaughn, C. E. Strouse and J. A. Gladysz, J. Am. Chem.
Soc., 1986, 108, 1462; (b) G. D. Vaughn and J. A. Gladysz, J. Am.
Chem. Soc., 1981, 103, 5608.
1 (a) Z. Gross, N. Galili and I. Saltsman, Angew. Chem., Int. Ed.,
1999, 38, 1427; (b) Z. Gross, N. Galili, L. Simkhovich, I. Saltsman,
M. Botoshansky, D. Blaser, R. Boese and I. Goldberg, Org. Lett.,
1999, 1, 599.
¨
2 (a) I. Aviv-Harel and Z. Gross, Chem.–Eur. J., 2009, 15, 8382;
(b) I. Aviv-Harel and Z. Gross, Coord. Chem. Rev., 2011, 255, 717.
3 (a) P. J. Brothers, Adv. Organomet. Chem., 2001, 48, 289;
(b) P. J. Brothers, Adv. Organomet. Chem., 2000, 46, 223;
15 H. Ogoshi, J. Setsune, T. Omura and Z. Yoshida, J. Am. Chem.
Soc., 1975, 97, 6461.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11677–11679 11679