and convolutamydines AꢀE, which are potent inhibitors of
the differentiation of promyelocytic leukemia cells.5
Although several elegant strategies have been reported for
3-hydroxyoxindoles,6 the current synthetic repertoire to a
spiro[oxirane-oxindole] framework still suffers from poor
stereocontrol, employs metal catalysis, and displays a poor
substrate scope.7
Table 1. Effects of the Organocatalyst and Solvent during
Epoxidation Reactionsa
Encouraged by the previously observed high reactivity
of 3-(oxyphosphonylmethylene)oxindoles with nucleophi-
lic oxidants,8 we devised the possibility of synthesizing
optically active spiro-epoxyoxindole esters by exploiting
an asymmetric catalytic modification of the WeitzꢀScheffer
epoxidation9 of electron-poor R-ylideneoxindoles (1).
10
ꢁ
Aside from the well-established JuliaꢀColonna reaction
and the phase transfer catalysis approach,11 efficient sys-
tems have been devised for the asymmetric epoxidation of
R,β-unsaturated aldehydes and ketones. Among the former
class of substrates, excellent results have been obtained by
employing diarylprolinol silyl ethers,12 chiral phospho-
ric amine salts,13 and diphenylfluoromethylpyrrolidine as
highly effective catalysts.14 Diphenylprolinol15 as well as
guanidine16 and amino alcohol based17 catalysts are more
(4) Dandia, A.; Singh, R.; Saha, M.; Shivpuri, A. Pharmazie 2002, 57,
602.
(5) (a) Zhang, H.-P.; Kamano, Y.; Ichihara, Y.; Kizu, H.; Komiyama,
K.; Itokawa, H.; Pettit, G. R. Tetrahedron 1995, 51, 5523. (b) Kamano, Y.;
Zhang, H.-P.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Pettit, G. R. Tetra-
hedron Lett. 1995, 36, 2783.
a Unless otherwise stated, the reaction conditions were as follows: N-
methyl-R-ylideneoxindole 1a (0.5 mmol), TBHP (0.6 mmol), catalyst
(0.15 mmol), and solvent at rt. b The yields of the isolated products are
expressed as the sum of the diastereomers. c Determined by 1H NMR of
the crude reaction mixture. d Determined by chiral-phase HPLC analy-
sis. e H2O2 (30% in water, 0.15 mmol) was employed as the oxidant.
f Cumene hydroperoxide (CHP, 0.15 mmol) was employed as the
oxidant. g The reaction was performed at 4 °C.
(6) (a) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman,
Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418. (b) Chen, G.; Yang, Y.;
He, H.; Gao, S.; Yang, X.; Hao, X. Heterocycles 2006, 68, 2327. (c) Chen,
J.-R.; Liu, X.-P.; Zhu, X.-Y.; Li, L.; Qiao, Y.-F.; Zhang, J.-M.; Xiao, W.-J.
Tetrahedron 2007, 63, 10437. (d) Malkov, A. V.; Kabeshov, M. A.; Bella,
ꢁꢂ
ꢁ
ꢂ
M.; Kysilka, O.; Malyshev, D. A.; Pluhackova, K.; Kocovsky, P. Org. Lett.
2007, 9, 5473. (e) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.;
Shibata, N.; Toru, T. Chem.;Eur. J. 2008, 14, 8079. (f) Hara, N.;
Nakamura, S.; Shibata, N. Chem.;Eur. J. 2009, 15, 6790. (g) Xue, F.;
Zhang, S.; Liu, L.; Duan, W.; Wang, W. Chem.;Asian J. 2009, 4, 1664.
(h) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. Adv. Synth. Catal. 2010,
352, 1621. (i) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-Z.;
Wang, C.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176.
efficiently involved in the asymmetric epoxidation of
R,β-unsaturated ketones.
Conversely, the application of such organocatalytic
strategies to R,β-unsaturated carboxylic acid derivatives
is still a mostly unexplored field18 and remains a challeng-
ing endeavor of great interest.
ꢁ
(7) Schulz, V.; Davoust, M.; Lemarie, M.; Lohier, J.-F.; de Oliviera
ꢀ
Santos, J. S.; Metzner, P.; Briere, J.-F. Org. Lett. 2007, 9, 1745.
(8) Gasperi, T.; Loreto, M. A.; Migliorini, A.; Ventura, C. Eur. J.
Org. Chem. 2011, 385.
(9) Weitz, E.; Scheffer, A. Ber. Dtsch. Chem. Ges. 1921, 54, 2327.
By taking advantage of the impressive progress with
carbonyl derivatives, we pursued our research by investi-
gating the organocatalytic epoxidation of R-ylideneoxin-
doles (1), which are electron-poor olefins bearing two
electron-withdrawing groups on the opposite sides of the
double bond. Here, we report the initial successful asym-
metric oxidation to form the spiro[oxirane-oxindole] deri-
vatives 2 and 3 promoted by R,R-diaryl-prolinol deriv-
atives as bifunctional catalysts (Table 1).
Because a number of chiral secondary amines exhibit
different outcomes when employed as catalysts, the en-
antiopure prolinol derivatives AꢀE (Figure 1) were initi-
ally used as organocatalysts (30 mol %) to promote the
asymmetric epoxidation of a model electron-poor olefin,
N-methyl-R-ylideneoxindole 1a (Table 1).
ꢁ
(10) (a) Julia, S.; Masana, J.; Vega, J. C. Angew. Chem., Int. Ed. Engl.
ꢁ
1980, 19, 929. (b) Julia, S.; Guixer, J.; Masana, J.; Rocas, J.; Colonna, S.;
Annunziata, R.; Molinari, H. J. Chem. Soc., Perkin Trans. 1 1982, 1317.
(11) (a) Berkessel, A.; Gasch, N.; Glaubitz, K.; Koch, C. Org. Lett.
2001, 3, 3839. (b) Berkessel, A.; Koch, C.; Toniolo, C.; Rainaldi, M.;
Broxterman, Q. B.; Kaptein, B. Biopolymers: Pept. Sci. 2006, 84, 90.
(12) (a) Marigo, M.; Franzen, J.; Poulsen, T. B.; Zhuang, W.;
Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 6964. (b) Zhuang, W.;
Marigo, M.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 3883. (c)
Suden, H.; Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2006, 47, 99. (d)
Zhao, G.-L.; Ibrahem, I.; Suden, H.; Cordova, A. Adv. Synth. Catal.
2007, 349, 1210. (e) Bonzdic, B. P.; Urushima, T.; Ishikawa, H.; Hayashi,
Y. Org. Lett. 2010, 12, 5434.
(13) Wang, X.; List, B. Angew. Chem., Int. Ed. 2008, 47, 1119.
(14) Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmour, R. Angew.
Chem., Int. Ed. 2009, 48, 3065.
(15) (a) Enders, D.; Zhu, J.; Kramps, L. Liebigs Ann. Recl. 1997, 6,
1101. (b) Lattanzi, A. Org. Lett. 2005, 7, 2579. (c) Lattanzi, A. Adv.
Synth. Catal. 2006, 348, 339. (d) Lattanzi, A. Chem. Commun. 2009,
1452. (e) Russo, A.; Lattanzi, A. Synthesis 2009, 9, 1551. (f) De Fusco,
C.; Tedesco, C.; Lattanzi, A. J. Org. Chem. 2011, 76, 676.
(16) Tanaka, S.; Nagasawa, K. Synthesis 2009, 4, 667.
(18) (a) Weiss, K. M.; Tsogoeva, S. B. Chem. Rec. 2011, 11, 18. (b)
Dalko, P. I. Enantioselective Organocatalysis: Reaction and Experimen-
tal Procedure; Wiley-VCH: Weinheim, Germany, 2001.
(17) Lu, J.; Xu, Y.-H.; Liu, F.; Loh, T.-P. Tetrahedron Lett. 2008, 49,
6007.
Org. Lett., Vol. 13, No. 23, 2011
6249