212
J. Chen et al. / Inorganica Chimica Acta 378 (2011) 206–212
Appendix A. Supplementary material
1
CCDC 805649–805651 contain the supplementary crystallo-
graphic data for complexes 1–3, respectively. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
data associated with this article can be found, in the online version,
2
3-bpo
4-bpo
References
[1] S.R. Batten, R. Robson, Angew. Chem., Int. Ed. 37 (1998) 1460.
[2] J.J. Perry IV, J.A. Perman, M.J. Zaworotko, Chem. Soc. Rev. 38 (2009) 1400.
[3] J.P. Zhang, X.C. Huang, X.M. Chen, Chem. Soc. Rev. 38 (2009) 2385.
[4] J.S. Brooks, Chem. Soc. Rev. 39 (2010) 2667.
[5] S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design Analysis
and Application, RSC Publishing, 2009.
[6] R.E. Morris, X. Bu, Nature Chem 2 (2010) 353.
[7] S.L. James, Chem. Soc. Rev. 32 (2003) 276.
[8] C. Janiak, Dalton Trans. (2003) 2781.
[9] C.J. Kepert, Chem. Commun. (2006) 695.
[10] X.Y. Wang, L. Wang, Z.M. Wang, S. Gao, J. Am. Chem. Soc. 128 (2006)
674.
350
400
450
Wavelehgth (nm)
[11] L.F. Ma, L.Y. Wang, Y.Y. Wang, S.R. Batten, J.G. Wang, Inorg. Chem. 48 (2009)
915.
Fig. 4. Solid state fluorescent emissions of complexes 1 and 2, as well as 3-bpo and
4-bpo ligands.
[12] L.F. Ma, L.Y. Wang, M. Du, S.R. Batten, Inorg. Chem. 49 (2010) 365.
[13] M.L. Zhang, D.S. Li, J.J. Wang, F. Fu, M. Du, K. Zou, X.M. Gao, Dalton Trans.
(2009) 5355.
[14] H.Y. Yang, L.K. Li, J. Wu, H.W. Hou, B. Xiao, Y.T. Fan, Chem.-Eur. J. 15 (2009)
4049.
[15] S.M. Fang, Q. Zhang, M. Hu, X.G. Yang, L.M. Zhou, M. Du, C.S. Liu, Cryst. Growth
Des. 10 (2010) 4773.
[16] S.S. Chen, J. Fan, T. Okamura, M.S. Chen, Z. Su, W.Y. Sun, N. Ueyama, Cryst.
Growth Des. 10 (2010) 812.
emission bands at 425 and 378 nm, respectively (see Fig. 4).
However, no obvious emission is found for the ZnII complex 3 un-
der this excitation, which is probably due to the quenching effect of
high-energy C–H and/or O–H oscillators from the CH3OH solvent
[42]. In addition, the maximal emissions of 3-bpo and 4-bpo li-
gands are observed at 393 and 417 nm (kex = 345 and 370 nm).
However for H2mip or H2hip ligand, no obvious emission peak is
found under the similar conditions. Therefore, the emission peaks
[17] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36 (2007)
770.
[18] S. Sato, J. Tao, Y.Z. Zhang, Angew. Chem., Int. Ed. 46 (2007) 2152.
[19] J.L.C. Rowsell, O.M. Yaghi, Angew. Chem., Int. Ed. 44 (2005) 4670.
[20] M. Du, X.J. Zhao, J.H. Guo, S.R. Batten, Chem. Commun. (2005) 4836.
[21] R.Q. Zou, H. Sakurai, Q. Xu, Angew. Chem., Int. Ed. 45 (2006) 2542.
[22] Q.R. Fang, G.S. Zhu, Z. Jin, Y.Y. Ji, J.W. Ye, M. Xue, H. Yang, Y. Wang, S.L. Qiu,
Angew. Chem., Int. Ed. 46 (2007) 6638.
[23] Y.F. Zhou, M.C. Hong, X.T. Wu, Chem. Commun. (2006) 135.
[24] Y.X. Hu, S.C. Xiang, W.W. Zhang, Z.X. Zhang, L. Wang, J.F. Bai, B.L. Chen, Chem.
Commun. (2009) 7551.
[25] W. Zhang, R.G. Xiong, S.D. Huang, J. Am. Chem. Soc. 130 (2008) 10468.
[26] R.Q. Zou, A.I. Abdel-Fattah, H.W. Xu, Y.S. Zhao, D.D. Hickmott, CrystEngComm
12 (2010) 1337.
[27] M. Du, Z.H. Zhang, L.F. Tang, X.G. Wang, X.J. Zhao, S.R. Batten, Chem. Eur. J. 13
(2007) 2578.
of CdII complexes should be ascribed to the intraligand
and/or n ? p⁄ transitions with either 3-bpo or 4-bpo involved. Fur-
thermore, the significant red-shift for 1 ( k = 32 nm) and blue-
shift for 2 ( k = 39 nm) as well as the differences in luminescent
p ?
p⁄
D
D
intensity, compared with that of the corresponding free 3-bpo or
4-bpo ligand may be caused by the incorporation of metal–ligand
coordination interactions. The fluorescent emission-shift phenom-
ena are prevalently observed in the coordination complexes with
3-/4-bpo and benzenedicarboxylic acids [43–45].
[28] S.M. Fang, Q. Zhang, M. Hu, E.C. Sañudo, M. Du, C.S. Liu, Inorg. Chem. 49 (2010)
9617.
4. Conclusion
[29] L.F. Ma, L.Y. Wang, J.L. Hu, Y.Y. Wang, G.P. Yang, Cryst. Growth Des. 9 (2009)
5334.
[30] Z.G. Guo, R. Cao, X. Wang, H.F. Li, W.B. Yuan, G.J. Wang, H.H. Wu, J. Li, J. Am.
Chem. Soc. 131 (2009) 6894.
[31] R.Q. Zou, H. Sakurai, S. Han, R.Q. Zhong, Q. Xu, J. Am. Chem. Soc. 129 (2007)
8402.
This work presents three new CdII and ZnII coordination polymers
based on bent dipyridyl building blocks 3-/4-bpo and different ben-
zenedicarboxylic acids under similar synthetic conditions. Appar-
ently, their different network structures are largely dependent on
the choice of metal ions and organic tectons, affording two 1-D CdII
(tubular or dual-track motif) and one 2-D ZnII (grid-like layer) coor-
dination patterns, in which the 3-bpo and 4-bpo tectons exhibits the
bidentate and unidentate coordination fashions, respectively, and
all dicarboxylates act as the bridges to connect the metal centers.
Additionally, diverse higher-dimensional supramolecular lattices
are furnished via secondary interactions (H-bonding and aromatic
stacking), which are also critical to stabilize the overall structures.
Further efforts on such network-based metallosupramolecular
assemblies with mixed ligands are underway.
[32] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic
Chemistry, sixth ed., John Wiley and Sons, New York, 1999.
[33] M. Du, X.J. Jiang, X.J. Zhao, Inorg. Chem. 46 (2007) 3984.
[34] X.L. Wang, C. Qin, E.B. Wang, Cryst. Growth Des. 6 (2006) 439.
[35] M. Du, X.J. Jiang, X.J. Zhao, Inorg. Chem. 45 (2006) 3998.
[36] M. Du, X.H. Bu, Chem. Soc. Jpn. 82 (2009) 539.
[37] F. Bentiss, M. Lagrenée, J. Heterocycl. Chem. 36 (1999) 1029.
[38] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
[39] G.M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of
Crystal Structures, University of Göttingen, Germany, 1997.
[40] M. Du, Z.H. Zhang, X.G. Wang, L.F. Tang, X.J. Zhao, CrystEngComm 10 (2008)
1855.
[41] A. Morsali, M.Y. Masoomi, Coord. Chem. Rev. 253 (2009) 1882.
[42] B. Chen, Y. Yang, F. Zapata, G. Qian, Y. Luo, J. Zhang, E.B. Lobkovsky, Inorg.
Chem. 45 (2006) 8882.
[43] C.P. Li, J. Chen, M. Du, CrystEngComm 12 (2010) 4392.
[44] C.P. Li, Q. Yu, J. Chen, M. Du, Cryst. Growth Des. 10 (2010) 2650.
[45] J. Chen, C.P. Li, M. Du, CrystEngComm 13 (2011) 1885.
Acknowledgment
This work was financially supported by Tianjin Normal
University (No. 52X09004).