S.A. Beyramabadi et al. / Spectrochimica Acta Part A 83 (2011) 467–471
471
of the phenolic O–H bonds. These vibrations are observed at lower
energies than the alcoholic O–H ones, which is consistent with the
weaker phenolic O–H bonds with respect to the alcoholic ones. Also,
In the IR spectrum of the L3, a strong band was appeared in
the 1550–1500 cm−1 region. This broad and doublet band arises
from the overlapping of the stretching vibrations of the aro-
matic rings (Table 4). Also, appearance of a new intensive band
at 1222 cm−1 was assigned to the asymmetric stretching vibration
region of the IR spectra of the species L1 and L3.
[3] A. Bottcher, T. Takeuchi, K.I. Hardcastle, T.J. Meade, H.B. Gray, Inorg. Chem. 36
(1997) 2498–2504.
[4] E.M. Hodnett, P.D. Mooney, J. Med. Chem. 13 (2001) 786–788.
[5] E. Lamour, S. Routier, J.-L. Bernier, J.-P. Catteau, C. Bailly, H. Vezin, J. Am. Chem.
Soc. 121 (1999) 1862–1869.
[6] S. Sadeghi, A. Gafarzadeh, H. Naeimi, J. Anal. Chem. 61 (2006) 677–682.
[7] K.C. Gupta, A.K. Sutar, J. Mol. Catal. A: Chem. 272 (2007) 64–74.
[8] L. Stryer, Biochemistry, 4th ed., W.H. Freeman and Company, New York, 1995,
p. 631.
[9] H. Brurok, J.H. Ardenkjær-Larsen, G. Hansson, S. Skarra, K. Berg, J.O.G.
Karlsson, I. Laursen, P. Jynge, Biochem. Biophys. Res. Commun. 254 (1999)
768–772.
[10] A. Aukrust, D. Grace, L.K. Sydnes, K.W. Törnroos, J. Mol. Struct. 641 (2002)
281–297.
ˇ
ˇ
[11] V.M. Leovac, M.D. Joksovic´, V. Divjakovic´, L.S. Jovanovic´, Z. Saranovic´, A. Pevec,
J. Inorg. Biochem. 101 (2007) 1094–1097.
[12] H. Eshtiagh-Hosseini, M.R. Housaindokht, S.A. Beyramabadi, S. Beheshti, A.A.
Esmaeili, M. Javan-Khoshkholgh, A. Morsali, Spectrochim. Acta A 71 (2008)
1341–1347.
4. Conclusion
[13] H. Eshtiagh-Hosseini, M.R. Housaindokht, S.A. Beyramabadi, S.H. Mir
In continuation of our previous works [12,13], herein, three
dipyridoxyl Schiff-bases (L1–L3) have been newly synthesized and
experimentally characterized. The geometries of the Schiff bases
were optimized using the B3LYP level and 6–311 + G(d, p) basis sets.
Also, the 1H NMR chemical shifts and IR vibrational frequencies of
the species have been calculated at the same computational level.
The obtained results are in good agreement with the experimen-
tal evidence, confirming validity of the optimized geometries for
the species L1–L3. The DFT results can be used for analysis of the
similar compounds, too.
Tabatabaei, A.A. Esmaeili, M. Javan-Khoshkholgh, Spectrochim. Acta
(2011) 1046–1050.
A 78
[14] H. Eshtiagh-Hosseini, H. Aghabozorg, M. Mirzaei, S.A. Beyramabadi, H.
Eshghi, A. Morsali, A. Shokrollahi, R. Aghaei, Spectrochim. Acta A 78 (2011)
1392–1396.
[15] I. Alkorta, J. Elguero, C. Roussel, Comput. Theor. Chem. 966 (2011)
334–339.
[16] G. Liu, H. Zhou, L. Wang, X. Zhang, W. Zhang, Spectrochim. Acta A 79 (2011)
1105–1108.
[17] S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali,
Organometallics 27 (2008) 72–79.
[18] S.A. Beyramabadi, H. Eshtiagh-Hosseini, M.R. Housaindokht, A. Morsali, J. Mol.
Struct.: THEOCHEM 903 (2009) 108–114.
However, the substituted groups are in the same plane with the
pyridine rings, the optimized geometries of the new Schiff bases
are not planar. Each of the aromatic rings lies in a separate plane.
Change in the bridge region affects considerably the structure of
the pyridoxal Schiff base, especially the dihedral angle between
two pyridine rings, which is increased in going from the species L1
to L3.
The phenolic protons are engaged in the intramolecular-
hydrogen bonds with the azomethine nitrogens, which leads to
weakness of the phenolic O–H bond and considerable upfield shift
in the chemical shifts of the phenolic protons.
[19] S. Chowdhury, F. Himo, N. Russo, E. Sicilia, J. Am. Chem. Soc. 132 (2010)
4178–4190.
[20] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
[21] M.J. Frisch, et al., Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA,
1998.
[22] D.C. Young, Computational Chemistry: A Practical Guide for Applying Tech-
niques to Real-World Problems, John Wiley & Sons, Inc., 2001.
[23] R. Ditchfield, Mol. Phys. 27 (1974) 789–807.
[24] S. Naskar, S. Naskar, R.J. Butcher, S. Kumar Chattopadhyay, Inorg. Chim. Acta
363 (2010) 404–411.
[25] S. Naskar, S. Naskar, H.M. Figgie, W.S. Sheldrick, S. Kumar Chattopadhyay, Poly-
hedron 29 (2010) 493–499.
[26] A.A. Khandar, B. Shaabani, F. Belaj, A. Bakhtiari, Polyhedron 25 (2006)
1893–1900.
[27] Y.-L. Zhang, W.-J. Ruan, X.-J. Zhao, H.-G. Wang, Z.-A. Zhu, Polyhedron 22 (2003)
1535–1545.
[28] H. Dal, Y. Süzen, E. S¸ ahin, Spectrochim. Acta A 67 (2007) 808–814.
[29] F. Gao, W.-J. Ruan, J.-M. Chen, Y.-H. Zhang, Z.-A. Zhu, Spectrochim. Acta A 62
(2005) 886–895.
Acknowledgment
We gratefully acknowledge financial support from the Islamic
Azad University, Mashhad Branch.
[30] J. Sanmartín, A.M. García-Deibe, M. Fondo, D. Navarro, M.R. Bermejo, Polyhe-
dron 23 (2004) 963–967.
[31] A. Schmidt, A.S. Lindner, F.J. Ramírez, J. Mol. Struct. 834–836 (2007)
311–317.
[32] A. Pui, C. Policar, J.-P. Mahy, Inorg. Chim. Acta 360 (2007) 2139–2144.
[33] D.C. Ware, D.S. Mackie, P.J. Brothers, W.A. Denny, Polyhedron 14 (1995)
1641–1646.
References
[1] D. Yu, H. Xiaoxia, S. Xiaoli, Z. Zhiling, Wuhan Univ. J. Nat. Sci. 15 (2010) 165–170.
[2] D. Kumar, P.K. Gupta, A. Syamal, J. Chem. Sci. 117 (2005) 247–253.