Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Formation of cis-4,5-Disubstituted δ-Lactones 5a,
’ ASSOCIATED CONTENT
5b, and 5e via Krapcho Decarboxylationa
S
Supporting Information. Experimental procedures; spec-
b
tral and HPLC data; and crystallographic data (CIF). This material is
’ AUTHOR INFORMATION
Corresponding Author
mkrische@mail.utexas.edu; jsj@unc.edu
a Conditions A: LiCl (500 mol %), 3 Å molecular sieves, DMSO (1 M),
150 °C. Conditions B: NaCl (500 mol %), DMSO (0.2 M), 160 °C.
’ ACKNOWLEDGMENT
The Robert A. Welch Foundation (F-0038), NIH NIGMS
(R01-GM069445), and NSF (CHE-0749691) are acknowledged
for financial support. The Natural Sciences and Engineering
Research Council of Canada (NSERC) is acknowledged for
generous postdoctoral support (J.M.). This paper is dedicated to
Professors D. A. Evans and B. M. Trost on the occasion of their
70th birthdays.
Scheme 2. Reactions of DÀA Cyclopropane 1b Incorporat-
ing a Phosphonoacetate Moietya
’ REFERENCES
(1) For a review of the stereoselective synthesis of substituted
cyclopropanes, see: Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette,
A. B. Chem. Rev. 2003, 103, 977.
(2) For reviews of DÀA cyclopropanes, see: (a) Reissig, H-U;
Zimmer, R. Chem. Rev. 2003, 103, 1151. (b) Yu, M.; Pagenkopf, B. L.
Tetrahedron 2005, 61, 321. (c) Rubin, M.; Rubina, M.; Gevorgyan, V.
Chem. Rev. 2007, 107, 3117. (d) Carson, C. A.; Kerr, M. A. Chem. Soc.
Rev. 2009, 38, 3051. (e) De Simone, F.; Waser, J. Synthesis 2009, 3353.
(f) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.;
Sanders, S. D. J. Org. Chem. 2010, 75, 6317.
(3) For selected examples in synthesis, see: (a) Sugita, Y.; Kawai, K.;
Yokoe, I. Heterocycles 2000, 53, 657. (b) Lautens, M.; Han, W. J. Am.
Chem. Soc. 2002, 124, 6312. (c) Young, I. S.; Kerr, M. A. Angew. Chem.,
Int. Ed. 2003, 42, 3023. (d) Pohlhaus, P. D.; Johnson, J. S. J. Org. Chem.
2005, 70, 1057. (e) Carson, C. A.; Kerr, M. A. J. Org. Chem. 2005,
70, 8242. (f) Kang, Y.-B.; Tang, Y.; Sun, X.-L. Org. Biomol. Chem. 2006,
4, 299. (g) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.;
de Meijere, A. J. Org. Chem. 2007, 72, 7504. (h) Bajtos, B.; Yu, M.; Zhao,
H.; Pagenkopf, B. L. J. Am. Chem. Soc. 2007, 129, 9631. (i) Perreault, C.;
Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. 2008, 10, 689.
(j) Lebold, T. P.; Leduc, A. B.; Kerr, M. A. Org. Lett. 2009, 11, 3770.
(k) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 14202. (l)
Parsons, A. T.; Smith, A. G.; Neel, A. N.; Johnson, J. S. J. Am. Chem. Soc.
2010, 132, 9688. (m) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett.
2011, 13, 1996.
(4) For examples of nucleophilic allylation of aldehydes and acetals
at vinylcyclopropane donor sites via in situ borylation, see: (a) Sumida,
Y.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 4677. (b) Selander, N.;
Szabo, K. J. Chem. Commun. 2008, 3420.
(5) (a) Shimizu, I.; Ohashi, Y.; Tsuji, J. Tetrahedron Lett. 1985,
26, 3825. (b) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 1157.
(c) Bowman, R. K.; Johnson, J. S. Org. Lett. 2006, 8, 573. (d) Parsons,
A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541. (e) Trost,
B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167. (f) Goldberg,
A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474–4476.
a Reagents: (a) Standard conditions as described in Table 1 using
catalyst (R)-I. (b) K2CO3, CH2O, H2O, 60 °C. (c) DCC, DMAP,
CH2Cl2, 23 °C.
made on the basis of single-crystal X-ray diffraction analysis, as
described in the Supporting Information.
To explore the utility of the coupling products, adducts 4a, 4b,
and 4e were subjected to conditions for Krapcho decarboxyla-
tion, resulting in the formation of cis-4,5-disubstituted δ-lactones
5a, 5b, and 5e, respectively. Notably, lactones of this type appear
as substructures in natural products such as leustroducsin8 and
phoslactomycin9 (Scheme 1). The range of compounds availed
through this approach was further expanded through variation of
the acceptor group, as in DÀA cyclopropane 1b, which incorpo-
rates a phosphonoacetate moiety. 1b reacts with benzyl
alcohol and benzaldehyde under the standard conditions to
provide adduct 6b. The methine adjacent to the acceptor
group in adduct 6b represents a third, undefined stereogenic
center, requiring evaluation of the diastereo- and enantio-
selectivity at a subsequent stage. For compound 6b, the
HornerÀWadsworthÀEmmons reaction with paraformalde-
hyde occurred with concomitant saponification to provide the
methylidene carboxylic acid, which upon exposure to dicyclo-
hexylcarbodiimide (DCC) was transformed to the α-methylene
glutarolactone 7. The enantiomeric excess was determined at this
stage (Scheme 2).
In summary, we report umpoled reactions of donorÀ
acceptor cyclopropanes, as illustrated by diastereo- and
enantioselective iridium-catalyzed DÀA cyclopropane-mediated car-
bonyl allylations from the alcohol or aldehyde oxidation levels. These
studies open new routes to optically enriched cis-4,5-disubstituted
δ-lactones. Of broader significance, identification of the structural and
interactional features of the catalytic system required for polarity
inversion provide a foundation for the development of related CÀC
coupling processes.
(6) For a review, see: Bower, J. F.; Krische, M. J. Top. Organomet.
Chem. 2011, 43, 107.
(7) For selected examples of enantioselective carbonyl allylation by
iridium-catalyzed CÀC bond-forming transfer hydrogenation, see:
(a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130,
6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 14891. (c) Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc.
2009, 131, 2514. (d) Gao, X.; Townsend, I. A.; Krische, M. J. J. Org.
Chem. 2011, 76, 2350. (e) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J.
18620
dx.doi.org/10.1021/ja2090993 |J. Am. Chem. Soc. 2011, 133, 18618–18621