154
R. Roszak et al. / Applied Catalysis A: General 409–410 (2011) 148–155
125.7; 125.8; 127.2; 128.9; 129.1; 130.3; 132.1; 133.2; 146.6;
172.8.
temperatures (Tonset5% and Tonset) were determined from onset 5
mass loss and 50% mass loss respectively, under nitrogen.
Elemental analysis calc. (%) for C20H24ClNO4 (377.86): C 63.57,
H 6.40, N 3.71. Found: C 63.93, H 6.02, N 3.99.
4.4. Heck reaction
4-Benzyl-4-methylmorpholinium
(S)-(−)-2-bromo-3-
methylbutyrate, [BMmorf][7j], 1H NMR (DMSO-d6) ı ppm 1.02
(d, J = 1.28 Hz, 6H); 2.19 (m, 1H); 3.13 (s, 3H); 3.40 (t, J = 4.21 Hz,
2H); 3.59 (qw, J = 5.20 Hz, 2H); 4.00 (t, J = 1.65 Hz, 4H); 4.68 (d,
J = 1.92 Hz, 1H); 4.85 (s, 2H); 7.54 (m, 3H); 7.62 (m, 2H); 13C NMR
(DMSO-d6) ı ppm 19.0; 31.7; 44.9; 55.4; 58.4; 59.8; 67.2; 127.3;
128.8; 130.3; 133.2; 170.2.
The Heck arylation of DHF with PhI was carried out under
N2 atmosphere using standard Schlenk technique. Reagents were
introduced to the Schlenk tube in a following order: Pd(OAc)2
(8.0 mg, 0.0356 mmol, 1 mol.%), solvent DMF (6 mL) or DMF/H2O
(3 mL + 3 mL), IL (appropriate amount), K2CO3 (0.6 g, 4.34 mmol),
PhI (0.4 mL, 3.57 mmol) mesitylene (internal standard, 0.15 mL)
and DHF (0.7 mL, 8.59 mmol). If not mentioned otherwise the reac-
tion was carried out at 70 ◦C for 2 h. Afterwards, reaction mixture
performed in DMF was quenched with H2O (3 mL) and organic
products were separated by extraction with diethyl ether (3 times:
10 mL, 7 mL and 7 mL). Products were analysed by GC-FID (Hewlett
Packard 8454A). Products 2, 3, 4 were identified by comparison
of MS spectra and retention times with literature data. Products
of reactions proceeding in DMF:H2O mixture were extracted as
mentioned above but without quenching.
Elemental analysis calc. (%) for C17H26BrNO3 (372.29): C 54.84,
H 7.06, N 3.76. Found: C 54.33, H 6.75, N 4.18.
4-Benzyl-4-methylmorpholinium
(R)-(+)-2-bromo-3-
methylbutyrate, [BMmorf][7k] 1H NMR (DMSO-d6) ı ppm 1.02
(d, J = 1.10 Hz, 6H); 2.19 (m, 1H); 3.14 (s, 3H); 3.40 (t, J = 4.27 Hz,
2H); 3.60 (qw, J = 5.20 Hz, 2H); 4.00 (t, J = 1.71 Hz, 4H); 4.65 (d,
J = 1.83 Hz, 1H); 4.86 (s, 2H); 7.54 (m, 3H); 7.63 (m, 2H); 13C NMR
(DMSO-d6) ı ppm 19.2; 31.7; 44.8; 55.7; 58.4; 59.8; 67.2; 127.3;
128.8; 130.3; 133.2; 170.3.
Elemental analysis calc. (%) for C17H26BrNO3 (372.29): C 54.84,
H 7.04, N 3.76. Found: C 55.27, H 7.52, N 3.07.
Enantiomeric excess (e.e.) values were determined by GC-FID
(Hewlett Packard 8454A) with chiral -cyclodextrine column.
4-Benzyl-4-methylmorpholinium
(R)-(+)-2-
(benzyloxy)propionate, [BMmorf][7l] 1H NMR (DMSO-d6)
ı
References
ppm 1.21 (d, J = 3.39 Hz, 3H); 3.11 (s, 3H); 3.39 (t, J = 4.27 Hz,
2H); 3.59 (qw, J = 5.24 Hz, 2H); 3.65 (kw, J = 5.04 Hz, 1H); 3.96 (t,
J = 1.65 Hz, 4H); 4.61 (s, 2H); 4.82 (s, 2H); 7.31 (m, 5H); 7.52 (m,
3H); 7.61 (m, 2H); 13C NMR (DMSO-d6) ı ppm 19.5; 44.7; 58.3;
59.9; 67.4; 69.8; 76.6; 126.8; 127.3; 127.4; 128.0; 128.8; 130.2;
133.3; 139.7; 174.8.
[1] (a) R.F. Heck, Acc. Chem. Res. 12 (1979) 146–151;
(b) A.M. Trzeciak, J.J. Ziółkowski, Coord. Chem. Rev. 249 (2005) 2308–2322;
(c) I.P. Beletskaya, A.V. Cherpakov, Chem. Rev. 100 (2000) 3009–3066;
(d) N.J. Whitcombe, K.K. Hii, S.E. Gibson, Tetrahedron 57 (2001) 7449–7476;
(e) I. Tsuji, Palladium Reagents and Catalysts. New Perspectives for the 21 st
Century, John Wiley & Sons, Ltd., 2004;
(f) R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283–2321.
[2] M.M. Heravi, A. Fazeli, Heterocycles 81 (2010) 1979–2026.
[3] A. Steven, L.E. Overman, Angew. Chem. Int. Ed. 46 (2007) 5488–5508.
[4] Z. Hyder, J. Ruan, J. Xiao, Chem. Eur. J. 14 (2008) 5555–5566, and references
cited there.
[5] V. Calò, A. Nacci, A. Monopoli, V. Ferola, J. Org. Chem. 72 (2007) 2596–2601.
[6] D. Pan, N. Jiao, Synlett 11 (2010) 1577–1588.
[7] (a) F. Ozawa, A. Kubo, Y. Matsumoto, T. Hayashi, Organometallics 12 (1993)
4188;
(b) T. Hayashi, A. Kubo, F. Ozawa, Pure Appl. Chem. 64 (1992) 421–427;
(c) F. Ozawa, Y. Kobatake, T. Hayashi, Tetrahedron Lett. 34 (1993) 2505–2508;
(d) E. Mieczyn´ ska, A.M. Trzeciak, Molecules 15 (2010) 2166–2177.
[8] S. Hillers, S. Sartori, O. Reiser, J. Am. Chem. Soc. 118 (1996) 2087–2088.
[9] J. Mazuela, O. Pàmies, M. Diéguez, Chem. Eur. J. 16 (2010) 3434–3440, and
references cited there.
[10] S.Y. Cho, M. Shibasaki, Tetrahedron Lett. 39 (1998) 1773–1776.
[11] (a) J. Kang, J.H. Lee, K.S. Im, J. Mol. Catal. A: Chem. 196 (2003) 55–63;
(b) G.A. Molander, J.P. Burke, P.J. Carroll, J. Org. Chem. 69 (2004) 8062–8069.
[12] W.-M. Dai, K.K.Y. Yeung, Y. Wang, Tetrahedron 60 (2004) 4425–4430.
[13] D.A. Rankic, D. Lucciola, B.A. Keay, Tetrahedron Lett. 51 (2010) 5724–5727.
[14] (a) L.F. Tietze, K. Thede, Chem. Commun. (1999) 1811–1812;
(b) T. Tu, W.-P. Deng, X.-L. Hou, L.-X. Dai, X.-C. Dong, Chem. Eur. J. 9 (2003)
3073–3081.
Elemental analysis calc. (%) for C22H29NO4 (371.47): C 71.13, H
7.87, N 3.77. Found: C 70.75, H 8.27, N 3.23.
4-Benzyl-4-methylmorpholinium
(D)-(−)-quinate,
[BMmorf][7m] 1H NMR (DMSO-d6) ı ppm 1.45 (d, J = 1.83 Hz,
1H); 1.49 (d, J = 2.01 Hz, 1H); 1.62 (d, J = 5.58 Hz, 1H); 1.71 (d,
J = 2.20 Hz, 1H); 3.09 (s, 3H); 3.37 (t, J = 7.14 Hz, 2H); 3.44 (m, 3H);
3.57 (m, 3H); 3.98 (t, J = 2. 62 Hz, 4H); 4.35 (m, 2H); 4.77 (s, 2H);
4.89 (m, 1H); 7.54 (m, 3H); 7.59 (m, 2H); 13C NMR (DMSO-d6) ı
ppm 44.9; 58.5; 59.9; 66.2; 67.5; 69.0; 73.2; 73.5; 127.2; 128.9;
130.3; 133.3; 179.3.
Elemental analysis calc. (%) for C19H29NO7 (383.43): C 59.52, H
7.62, N 3.65. Found: C 59.94, H 8.08, N 3.01.
4-Benzyl-4-methylmorpholinium
(2S,
4R)-4-
hydroxypyrrolidine-2-carboxylate, [BMmorf][7n] 1H NMR
(DMSO-d6) ı ppm 1.71 (t, 2H); 3.03 (m, 2H); 3.11 (s, 3H); 3.39 (t,
J = 4.27 Hz, 2H); 3.58 (qw, J = 3.77 Hz, 2H); 3.97 (t, J = 2.56 Hz, 4H);
4.02 (t, J = 3.36 Hz, 1H); 4.81 (s, 2H); 7.26 (m, 1H); 7.53 (m, 3H);
7.60 (m, 2H); 13C NMR (DMSO-d6) ı ppm 40.3; 44.8; 48.5; 55.0;
58.4; 59.9; 66.0; 67.4; 127.4; 128.8; 130.3; 133.3; 176.2.
[15] For review of stereoselective Heck coupling see M. Shibasaki, E.M. Vogl, T.
Ohshima, Adv. Synth. Catal. 346 (2004) 1533–1552.
Elemental analysis calc. (%) for C17H26N2O4 (322.40): C 63.33, H
8.13, N 8.69. Found: C 62.75, H 8.57, N 9.03.
[16] (a) A.A. Sabino, A.H.L. Machado, C.R.D. Correia, M.N. Eberlin, Angew. Chem. Int.
Ed. 43 (2004) 2514–2518;
(b) S.-K. Kang, S.-C. Choi, H.-C. Ryu, T. Yamaguchi, J. Org. Chem. 63 (1998)
5748–5749;
4.3. Thermal analysis
(c) M. Rosol, A. Moyano, J. Organomet. Chem. 690 (2005) 2291–2296;
(d) T. Jeffery, M. David, Tetrahedron Lett. 39 (1998) 5751–5754;
(e) A.H.L. Machado, M.A. de Sousa, D.C.S. Patto, L.F.S. Azevedo, F.I. Bombonato,
C.R.D. Correia, Tetrahedron Lett. 50 (2009) 1222–1225.
Melting points and other thermal transitions of the CILs were
determined (DSC), Mettler Toledo DSC Instruments model cooled
with an intracooler. The calorimeter was calibrated for tempera-
ture and cell constants using indium (melting point 156.61 ◦C, ꢀH
28.71 J g−1). Data were collected at constant atmospheric pressure,
using samples between 10 and 40 mg in aluminum sample pans.
Experiments were performed heating at the rate 10 ◦C min−1. An
empty sample pan was used as reference.
Thermal decomposition temperatures were measured in the
dynamic heating regime using a TGA (TA Instruments 2950) under
air atmosphere. Samples between 2 and 10 mg were heated from
40 to 500 ◦C under constant heating at 10 ◦C min−1. Decomposition
[17] D.W. Dodd, H.E. Toews, F.d.S. Carneiro, M.C. Jennings, N.D. Jones, Inorg. Chim.
Acta 359 (2006) 2850–2858.
[18] (a) H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A: Gen. 373 (2010)
1–56;
(b) F. Bellina, C. Chiappe, Molecules 15 (2010) 2211–2245.
[19] A. Winkel, P. Vasu Govardhana Reddy, R. Wilhelm, Synthesis
999–1016.
7 (2008)
[20] K. Bica, P. Gaertner, Eur. J. Org. Chem. 19 (2008) 3235–3250.
[21] S. Garre, E. Parker, B. Ni, A.D. Headley, Org. Biomol. Chem. 6 (2008) 3041–3043.
[22] V. Jurcik, M. Gilani, R. Wilhelm, Eur. J. Org. Chem. (2006) 5103–5109.
[23] Z. Wang, Q. Wang, Y. Zhang, W. Bao, Tetrahedron Lett. 46 (2005) 4657–4660.
[24] (a) J. Pernak, J. Feder-Kubis, Chem. Eur. J. 11 (2005) 4441–4449;
(b) J. Pernak, J. Feder-Kubis, Tetrahedron: Asymmetry 17 (2006)
1728–1737;