C. Y. Kawasoko et al. / Tetrahedron Letters 52 (2011) 6067–6071
6071
14. (a) Bertus, P.; Fécourt, F.; Bauder, C.; Pale, P. New J. Chem. 2004, 28, 12; (b)
Létinois-Halbes, U.; Pale, P.; Berger, S. J. Org. Chem. 2005, 70, 9185; (c) Stambuli,
J. P.; Bühl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9346.
proposal, outlined in Figure1, involving the (E)-telluro(silyl)ketene
acetals and 1-alkynes is similar to that described in the litera-
ture.11a,11i Therefore, the PdCl2 must react with the vinyl
compound 4 in a fast oxidative addition, producing the initial
Pd-complex 7. The next step in the Pd-cycle would connect with
the cycle of the copper14 and subsequent Pd/Cu transmetalation
from the copper acetylide 8 (formed in the Cu-cycle) to give the
Pd-species 9 which after trans/cis isomerization and reductive
elimination will furnish the symmetrical and unsymmetrical (Z)-
1,4-diorganyl-2-tri(organyl)-silyl-1-buten-4-ynes 6, with regener-
ation of the catalyst (Fig. 1).
In summary, we describe herein the highly stereoselective syn-
thesis of (E)-telluro(silyl)ketene acetals 4a–g via Al/Te transmeta-
lation of the novel ‘ate complex’ (Z)-b-vinylorganosilane alanates,
which were generated by the hydroalumination of silylacetylene
with DIBAL-H followed by the addition of n-BuLi. The (E)-tell-
uro(silyl)ketene acetals were successfully applied in the Sonogash-
ira cross-coupling reaction with 1-alkynes, using sonication to
speed up the process, leading to the synthesis of the (Z)-1,4-dior-
ganyl-2-tri(organyl)silyl-1-buten-3-ynes. The mechanism of the
modified Sonogashira cross-coupling reaction is proposed.
15. Typical procedure for the synthesis of (E)-telluro(silyl)ketene acetals.
To a two-neck 50 mL flask under nitrogen atmosphere, containing a solution of
1-trimethysilyl-2-organyl ethyne and DIBAL-H in ethyl ether/hexane, the
mixture was stirred at 25 °C for the time and conditions shown in Table 1. The
disappearance of the starting material was confirmed by TLC using hexane as
eluent. The resulting solution was cooled to 0 °C and n-BuLi was transferred
and the reaction stirred for 30 min. Then, a solution of butyl tellurenylbromide/
lithium chloride [(C4H9TeBr/LiCl 2.0 mmol], prepared separately by the
addition of bromine (0.070 g; 1.0 mmol) in hexane (5 mL) to a solution of
dibutyl ditelluride22 (0.368 g; 1.0 mmol) in THF (10 mL) cooled at 0 °C. Next,
dry lithium chloride (0.084 g; 2.0 mmol) was added and the mixture stirred for
10 min. Then, the solution of butyltellurenyl-bromide/lithium chloride was
added dropwise at 0 °C with a syringe to the (Z)-b-vinylorganolsilane alanates
3a–g derivatives. The stirring was continued for an additional time shown in
Table 1, and the mixture was transferred to an Erlenmeyer flask (500 mL) and
diluted with ethyl acetate (20 mL), water (50 mL) and 95% ethanol (20 mL).
Butyl bromide (1.0 mL) and finally NaBH4 (until the mixture turned pale
yellow) were added to transform dibutyl ditelluride to the corresponding
telluride, which is more easily removed by distillation. After this treatment, the
crude product was extracted with ethyl acetate (3 Â 20 mL) and washed with
brine (4 Â 15 mL). The organic phase was dried over anhydrous MgSO4, and the
solvent evaporated. After filtration through Celite using hexane as eluent, the
product was concentrated under vacuum. Dibutyl telluride was removed by
distillation from the crude product using
a Kugelrohr apparatus (80 °C/
0.01 mm Hg). Flash column chromatography (using silica gel 230–400 mesh
and the appropriate mobile phase as shown in Table 1) of the residue furnished
the (E)-telluro(silyl)ketene acetals as a yellow oil.
Acknowledgments
16. (E)-1-Butyltelluro-1-trimethylsilyl-1-octene 4b. Yield (65%), IR (neat, cmÀ1):
2954, 1573, 1377, 1245, 690. 1H NMR (300 MHz, in CDCl3) 0.21 (s, 9 H); 0.86–
0.94 (m, 6H); 1.27-1.42 (m, 10H); 1.73 (quint., J = 7.5 Hz, 2H); 2.18 (q,
J = 7.5 Hz, 2H); 2.69 (t, J = 7.5 Hz, 2H); 6.81 (t, J = 7.5 Hz, 1H). 13C NMR (75 MHz,
in CDCl3) 1.12; 7.17; 7.20; 13.42; 14.01; 22.57; 25.17; 28.87; 29.53; 31.71;
33.43; 35.94; 114.66; 156.76. Anal Calcd for C15H32SiTe: C, 48.91; H, 8.69;
Found: C, 48.84; H 8.80.
This article was financially supported by FUNDECT-MS, PROPP-
UFMS, CNPq, and CAPES. The authors thank Dr. Janet W. Reid (JWR
Associates) for assistance in revising the English text.
References and notes
17. (E)-1-Butyltelluro-1-trimethylsilyl-2-phenyl ethene 4c. Yield (70%), IR (neat,
cmÀ1) 3054, 3020, 2954, 2925, 1687, 1486, 1245, 835. 1H NMR (300 MHz, in
CDCl3) 0.21 (s, 9H); 1.10 (t, J = 7.5 Hz, 2H); 1.58 (sext., J = 7.5 Hz, 2H); 1.99
(quint., J = 7.5 Hz, 2H); 3.01 (t, J = 7.5 Hz, 2 H); 7.33–7.47 (m, 5H), 8.03 (s, 1H).
13C NMR (75 MHz, in CDCl3) 1.12; 7.15; 8.28; 13.45; 25.16; 33.29; 123.57,
127.16; 127.70; 127.79; 127.82; 127.85; 127.88; 151.47. Anal Calcd for
1. (a) Eisch, J. J. In Comprehensive Organic Synthesis; Trost, B. M., Fleiming, I.,
Schreiber, S. L., Eds.; Vol 8; Pergamom: Oxford, U.K, 1991; p 773; (b) Zweifel,
G.; Miller, J. A. Org. React. 1984, 32, 375; (c) Zweifel, G. In Aspects of Mechanism
and Organometallic Chemistry; Brewster, J. H., Ed.; Plenum Press: New York,
1978; p p 229; (d) Zweifel, G. In Comprehensive Organic Synthesis; Barton, D. H.
R., Ollis, W. D., Eds.; Pergamon: Oxford, U.K, 1979; p 1013; (e) Winterfeldt, E.
Synthesis 1975, 10, 617; (f) Negishi, E. Organometallics in Organic Synthesis;
Wiley: New York, 1980; (g) Uhl, W. Coord. Chem. Rev. 2008, 252, 1540; (h) Uhl,
W.; Er, E.; Hepp, A.; Kosters, J.; Grunenberg, J. Organometallics 2008, 27, 3346;
(i) Zweifel, G.; Whiney, C. C. J. Am. Chem. Soc. 1967, 89, 2753; (j) Uhl, W.; Er, E.;
Hepp, A.; Kosters, J.; Layh, M.; Rohling, M.; Vinogradov, A.; Wurthwein, E.-U.;
Ghavtadze, N. Eur. J. Inorg. Chem. 2009, 3307.
C
15H14SiTe: C, 49.99; H 6.66; Found C, 48.82; H 6.91.
18. (E)-1-Butytelluro-1-dimethyphenylsilyl-1-hexene 4f. Yield (60%),%), IR (neat,
cmÀ1 3064, 2954, 2957, 2158, 1591, 1472, 1247, 813, 698. 1H NMR
)
(300 MHz, in CDCl3) 0.49 (s, 9H); 0.80 (t, J = 7.5 Hz, 3H); 0.89 (t, J = 7.5 Hz,
3H); 1.13–1.38 (m, 6H); 1.69 (quint., J = 7.5 Hz, 2H); 2.04 (q, J = 7.5 Hz, 2H);
2.63 (t, J = 7.5 Hz, 2H); 6.89 (t, J = 7.5 Hz, 1H); 7.32–7.57 (m, 5H). 13C NMR
(75 MHz, in CDCl3) 0.70; 8.97; 13.45; 25.17; 33.14; 121.6; 127.23; 127.45;
127.61; 127.76; 127.94; 129.06; 130.1; 130.9; 131.1; 132.5; 133.98; 139.55;
141.47; 152.07. Anal Calcd for C18H30SiTe: C, 53.73, H 7.46; Found C, 53.55; H
7.54.
2. Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961.
3. (a) Lipshutz, B. H.; Bullow, G.; Lowe, R. F.; Steven, K. L. Tetrahedron 1996, 52,
7265; (b) Langille, N. F.; Jaminson, T. F. Org. Lett. 2006, 8, 3761; (c) Ziegler, F. E.;
Mikami, K. Tetrahedron Lett. 1984, 25, 131; (d) Sato, F.; Kodama, H.; Sato, M. J.
Organomet. Chem. 1978, 157, C30.
19. Typical procedure for the synthesis of (Z)-1,4-diorganyl-2-tri(organyl)silyl-1-
buten-3-ynes.
To
a two-neck flask under nitrogen atmosphere and magnetic stirring
containing PdCl2 (0.177; 0.1 mmol) and CuI (0.019 g; 0.1 mol) in methanol
(5.0 mL) was added the (E)-telluro(silyl)ketene acetal 4 (0.5 mmol) and the
solution stirred for 45 min. at 25 °C. Next, the 1-alkyne (1.0 mmol) and
triethylamine (0.6 mL; 1.0 mmol) were transferred via syringe, and the
reaction mixture stirred under sonication using an ultrasonic cleaner
(Unique Ultrasonic Cleaner–USC800A) for the time shown in Table 4 at room
temperature. Then, the crude product was extracted with hexanes (4 Â 20 mL)
and washed with brine (5 Â 15 mL), the organic phase dried under MgSO4, the
solvent evaporated and the product concentrated under vacuum. Finally, the
product was purified by flash chromatography (using silica gel 230–400 mesh
and the appropriate mobile phase as shown in Table 4) furnishing the (Z)-1,4-
diorganyl-2-tri(organyl)silyl-1-buten-3-ynes as a yellow oil.
4. (a) Dabdoub, M. J.; Dabdoub, V. B.; Cassol, T. M.; Barbosa, S. L. Tetrahedron Lett.
1996, 37, 831; (b) Dabdoub, M. J.; Cassol, T. M. Tetrahedron 1995, 51, 12982.
5. Liu, X.; Henderson, J. A.; Sasaki, T.; Kishi, Y. J. Am. Chem. Soc. 2009, 131, 16678.
6. Guerrero, P. G., Jr.; Dabdoub, M. J.; Baroni, A. C. M. Tetrahedron Lett. 2008, 49,
3872.
7. (a) Guerrero, P. G., Jr.; Dabdoub, M. J.; Marques, F. A.; Wosch, C. L.; Baroni, A. C.
M.; Ferreira, A. G. Synth. Commun. 2008, 38, 4379; (b) Dabdoub, M. J.; Guerrero,
P. G., Jr. Tetrahedron Lett. 2001, 42, 7167.
8. (a) Eisch, J. J.; Foxton, M. W. J. Org. Chem. 1971, 36, 3520; (b) Eisch, J. J.; Rhee, S.-
G. J. Am. Chem. Soc. 1975, 97, 4673.
9. Akiyama, K.; Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 419.
10. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
20. (Z)-1-hexyl-4-pentyl-2-trimethylsilyl-1-buten-3-yne 6a. Yield (75%). IR (neat,
cmÀ1) 2956, 2927, 2856, 2358, 2341, 1247, 838. 1H NMR (300 MHz, in CDCl3)
0.20 (s, 9H); 0.86–0.92 (m, 7H); 1.28–1.55 (m, 13H); 2.15 (q, J = 7.7 Hz, 2H);
2.31 (t, J = 7.7 Hz, 2H); 6.55 (t, J = 7.7 Hz, 1H). 13C NMR (75 MHz, in CDCl3) 0.03;
14.05; 19.55; 22.23; 22.59; 28.87; 29.56; 31.16; 31.74; 32.35; 83.53; 90.30;
109.78; 153.16. Anal Calcd For C16H30Si: C, 76.67, H 11.98; Found C, 76.61; H
10.89.
11. For
a recent review on Sonogashira cross-coupling reactions, see: (a)
Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874. and references cited
therein; (b) Sing, V.; Ratti, N.; Kaur, S. J. Mol. Catal. A. 2011, 334, 13; (c) Posset,
T.; Guenther, J.; Pope, J.; Oeser, T.; Blumel, L. Chem. Commun. 2011, 47, 2059;
(d) Cao, J.; Yang, X.; Hua, X.; Deng, Y.; Lai, G. Org. Lett. 2011, 13, 478; (e) Parra,
J.; Mercader, J. V.; Agulló, C.; Abad-Fuentes, A.; Abad-Somovilla, A. Tetrahedron
2011, 67, 624; (f) Jordan, L. M.; Boyle, P. D.; Sargent, A. L.; Allen, W. E. J. Org.
Chem. 2010, 75, 8450; (g) Beaumont, S. K.; Kyriakou, G.; Lambert, R. M. J. Am.
Chem. Soc. 2010, 132, 12246; (h) Barmaz, D.; Proust, V.; Hu, X. J. Am. Chem. Soc.
2009, 131, 12078; (i) Kawaguchi, S.; Srivastava, P.; Engman, L. Tetrahedron Lett.
2011, 52, 4120; (j) Nazario, C. E. D.; Santana, A. S.; Kawasoko, C. Y.; Carollo, C.
A.; Hurtado, G. R.; Viana, L. H.; Barbosa, S. L.; Guerrero, P. G., Jr.; Marques, F. A.;
Dabdoub, V. B.; Dabdoub, M. J.; Baroni, A. C. M. Tetrahedron Lett. 2011, 52, 4177.
12. Zeni, G.; Comasseto, J. V. Tetrahedron Lett. 1999, 40, 4619.
21. (Z)-4-trimethylsilyl-undec-3-en-2-yn-1-ol 6d. Yield (62%). IR (neat, cmÀ1) 3348,
2954, 2925, 2856, 2198, 1249, 840. 1H NMR (300 MHz, in CDCl3) 0.21 (s, 9H);
0.88 (t, J = 7.5 Hz, 3H); 1.28–1.38 (m, 8H); 1.64 (s, 1H); 2.18 (q, J = 7.5 Hz, 2H);
4.39 (s, 2H); 6.65 (t, J = 7.5 Hz, 1H). 13C NMR (75 MHz, in CDCl3) 0.17; 13.99;
22.54; 28.96; 29.35; 31.68; 32.50; 51.79; 87.22; 89.09; 108.77; 155.42. Anal
Calcd for C14H25SiO: C, 70.76, H 10.54; Found C, 70.65; H 10.34.
22. (a) Cava, M.; Engman, L. Synth. Commun. 1982, 12, 163; (b) de Araujo, M. A.;
Raminelli, C.; Comasseto, J. V. J. Braz. Chem. Soc. 2004, 15, 358.
13. (a) Choudary, B. M.; Madhi, S.; Kantam, M. L.; Sreedhar, B.; Iwasawa, Y. J. Am.
Chem. Soc. 2004, 126, 2292; (b) Posset, T.; Bümel, J. J. Am. Chem. Soc. 2006, 128,
8394.