Inorganic Chemistry
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: Ronny.Neumann@weizmann.ac.il.
’ ACKNOWLEDGMENT
This research was supported by the Divadol Foundation, the
Peter and Bernice Catalysis Fund, and the Helen and Martin
Kimmel Center for Molecular Design. R.N. is the Rebecca and
Israel Sieff Professor of Chemistry.
’ REFERENCES
(1) (a) Novak, E.; Fodor, K.; Szailer, T.; Oszko, A.; Erdoehelyi, A.
Top. Catal. 2002, 20, 107–117. (b) Traynor, A. J.; Jensen, R. J. Ind. Eng.
Chem. Res. 2002, 41, 1935–1939. (c) Lim, H.-W.; Park, M.-J.; Kang,
S.-H.; Chae, H.-J.; Bae, J. W.; Jun, K.-W. Ind. Eng. Chem. Res. 2009,
48, 10448–10455.
(2) (a) Kaplan, V.; Wachtel, E.; Gartsman, K.; Feldman, Y.; Lubomirsky,
I. J. Electochem. Soc. 2010, 157, B552–B556. (b) Gattrell, M.; Gupta, N.; Co,
A. J. Electroanal. Chem. 2006, 594, 1–19.
(3) Jessop, P. G.; Joꢀo, F.; Tai, C. C. Coord. Chem. Rev. 2004,
248, 2425–2442. Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207–2221.
(4) (a) Morris, A. J.; Meyer, G. J.; Fujita, E. Acc. Chem. Res. 2009,
42, 1983–1994. (b) Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010,
254, 346–354. (c) Fujita, E. Coord. Chem. Rev. 1999, 185ꢀ186, 373–384.
(5) (a) Ettedgui, J.; Diskin-Posner, Y.; Weiner, L.; Neumann, R.
J. Am. Chem. Soc. 2011, 132, 188–190. (b) Teramura, K.; Tsuneoka, H.;
Shishido, T.; Tanaka, T. Chem. Phys. Lett. 2008, 467, 191–194.
(c) Kohno, Y.; Ishikawa, H.; Tanaka, T.; Funabiki, T.; Yoshida, S. Phys.
Chem. Chem. Phys. 2001, 3, 1108–1114. (d) Lo, C.-C.; Hung, C.-H.;
Yuan, C.-S.; Wu, J.-F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765–1774.
(6) (a) Lin, W.; Han, H.; Frei, H. J. Phys. Chem. B 2004, 108,
18269–18273. (b) Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.;
Honda, M. J. Phys. Chem. B 1997, 101, 2632–2636. (c) Liu, Q.; Zhou, Y.;
Kou, J.; Chen, X.; Tian, Z.; Gao, J.; Yan, S.; Zou, Z. J. Am. Chem. Soc.
2010, 132, 14385–14387.
(7) (a) Bart, S. C.; Anthon, C.; Heinemann, F. W.; Bill, E.;
Edelstein, N. M.; Meyer, K. J. Am. Chem. Soc. 2008, 130, 12536–12546.
(b) Castro-Rodriguez, I.; Meyer, K. J. Am. Chem. Soc. 2005, 127, 11242–
11243.
(c) Whited, M. T.; Grubbs, R. H. J. Am. Chem. Soc. 2008, 130, 5874–
5875. (d) Lu, C. C.; Saouma, C. T.; Day, M. W.; Peters, J. C. J. Am. Chem. Soc.
2007, 129, 4–5. (e) Laitar, D. S.; Mueller, P.; Sadighi, J. P. J. Am. Chem. Soc.
2005, 127, 17196–17197. (f) Ashley, A. E.; Thompson, A. L.; O’Hare, D.
Angew. Chem., Int. Ed. 2009,48, 9839–9843. (g) Riduan, S. N.; Zhang, Y.; Ying,
J. Y. Angew. Chem., Int. Ed. 2009, 48, 3322–3325. (h) Silvia, J. S.; Cummins,
C. C. J. Am. Chem. Soc. 2010, 132, 2169–2171.
Figure 2. 13C NMR (top) and IR (bottom) spectra of the (CxSy)n
polymer.
where x > y and indicates that, in part, both CꢀS bonds of CS2
had been cleaved in the photocatalytic process.
The (CxSy)n polymers are only soluble in apolar solvents such
1
as DMSO. H NMR in DMSO-d6 again showed residue of
catalyst but no other hydrogen-atom-containing compound. The
13C NMR spectrum (Figure 2, top) showed seven peaks
associated with the (CxSy)n polymer at 25.57, 25.97, 29.02,
29.22, 29.78, and 33.00 ppm for CꢀS single bonds and 61.18
ppm for CdS double bonds. Clearly, the 13C NMR spectrum is
indicative of various different types of CꢀS bond connectivity. The
IR spectrum (Figure 2, bottom) likewise showed several distinctive
peaks at 1452, 1084, and 1018 cmꢀ1 attributable to the various
possible CꢀS bonds.13d,14 Multiple matrix-assisted laser desorp-
tion ionization time-of-flight MS measurements were of low quality
but showed mostly molecular weights between 350 and 580 amu.
The photocatalytic splitting of CO2 was also attempted using
[Ru2L1(p-cymene)2Cl2]2+ as the catalyst in THF/H2O in var-
ious ratios as the solvent. Although on one or two occasions we
observed the formation of CO, the experiments were not
sufficiently repeatable. More typically, the formation of molec-
ular hydrogen was observed, which we associate with catalyst
decomposition because it is well-known that photoirradiation of
tertiary amines leads to decomposition via the formation of
cation radicals.4 Therefore, although we have successfully de-
signed an efficient catalyst for the photocleavage of CS2 with
visible light to its components, molecular sulfur, and a (CxSy)n
polymer, similar photocleavage of CO2 to CO and O2 will require
a more robust catalyst design.
(8) Chen, Y.; Peng, Y.; Chen, P.; Zhao, J.; Liu, L.; Li, Y.; Chen, S.;
Qu, J. Dalton Trans. 2010, 39, 3020–3025.
(9) (a) Zahradnik, R.; Jungwirth, P.; Urban, J.; Polasek, M. Helv.
Chim. Acta 1994, 77, 1810–1816. (b) Khenkin, A. M.; Efremenko, I.;
Weiner, L.; Martin, J. M. L.; Neumann, R. Chem.—Eur. J. 2010, 16,
1356–1364.
(10) Madhu, V.; Ekambaram, B.; Shimon, L. J. W.; Diskin-Posner,
Y.; Leitus, G.; Neumann, R. Dalton Trans. 2010, 39, 7266–7275.
(11) (a) Schubert, U. S.; Eschbaumer, C.; Heller, M. Org. Lett. 2000,
2, 3373–3376. (b) Smith, A. P.; Lamba, J. J. S.; Fraser, C. L. Org. Synth.
2002, 78, 82–90.
(12) (a) Bridgman, P. W. Proc. Am. Acad. Arts Sci. 1941, 74, 399–424.
(b) Whalley, E. Can. J. Chem. 1960, 38, 2105–2108. (c) Butcher, E. G.;
Alsop, M.; Weston, J. A.; Gebbie, H. A. Nature 1963, 199, 756–758.
(d) Chan, W. S.; Jonscher, A. K. Phys. Status Solidi 1969, 32, 749–761.
(13) Zmolek, P. B.; Sohn, H.; Gantzel, P. K.; Trogler, W. C. J. Am.
Chem. Soc. 2001, 123, 1199–1207.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic data in
b
CIF format, full experimental details, and additional structures,
spectra, and characterizations. This material is available free of
(14) Sadhir, R. K.; Schoch, K. F. Chem. Mater. 1996, 8, 1281–1286.
11275
dx.doi.org/10.1021/ic2008045 |Inorg. Chem. 2011, 50, 11273–11275