J. M. Hutchison et al. / Tetrahedron Letters 52 (2011) 6349–6351
6351
3. For an excellent review, see: Maddess, M. L.; Tackett, M. N.; Ley, S. V. Prog. Drug
Res. 2008, 66, 12–186.
4. For partial syntheses, see: (a) Fuwa, H.; Okamura, Y.; Natsugar, H. Tetrahedron
2004, 60, 5341–5352; (b) Chakraborty, T. K.; Mohan, B. K. Tetrahedron Lett.
2006, 47, 4999–5002; (c) Chakraborty, T. K.; Mohan, B. K.; Sreekanth, M.
Tetrahedron Lett. 2006, 47, 5003–5005.
tBuO
O
R
O
HO
O
O
R
OH
OtBu
5. Barik, S. Cell. Mol. Life Sci. 2006, 63, 2889–2900.
OH
OH
6. (a) Snyder, S. H.; Lai, M. M.; Burnett, P. E. Neuron 1998, 21, 283–294; (b)
Wilkinson, D. E.; Thomas, B. E., IV; Limburg, D. C.; Holmes, A.; Sauer, H.; Ross, D.
T.; Soni, R.; Chen, Y.; Guo, H.; Howorth, P.; Valentine, H.; Spicer, D.; Fuller, M.;
Steiner, J. P.; Hamilton, G. S.; Wu, Y.-Q. Bioorg. Med. Chem. Lett. 2003, 11, 4815–
4825. and references cited therein; (c) Sosa, I.; Reyes, O.; Kuffler, D. P. Exp.
Neurol. 2005, 195, 7–15.
7. (a) Daum, S.; Schumann, M.; Mathea, S.; Aumueller, T.; Balsley, M. A.; Constant,
S. L.; de Lacroix, B. F.; Kruska, F.; Braun, M.; Schiene-Fischer, C. Biochemistry
2009, 48, 6268–6277; (b) Galat, A.; Bua, J. Cell. Mol. Life Sci. 2010, 67, 3457–
3488.
8. (a) Göthel, S. F.; Marahiel, M. A. Cell. Mol. Life Sci. 1999, 55, 423–436; (b) Wang,
X. J.; Etzkorn, F. A. Biopolymers 2006, 84, 125–146; (c) Hatahet, F.; Ruddock, L.
W. Curr. Pharm. Design 2009, 15, 2488–2507.
9. Qi, W.; McIntosh, M. C. Tetrahedron 2008, 64, 7021–7025.
10. Qi, W.; McIntosh, M. C. Org. Lett. 2008, 10, 357–359.
11. McFarland, C. M.; McIntosh, M. C. In The Claisen Rearrangement–Methods and
Applications; Hiersemann, M., Nubbemeyer, U., Eds.; Wiley-VCH: Weinheim,
2007; pp 117–210.
12. Lubineau, A.; Billault, I. Carbohydr. Res. 1999, 320, 49–60.
13. Clay, D. R.; Rosenberg, A. G.; McIntosh, M. C. Tetrahedron: Asymmetry 2011, 22,
713–716.
14. (a) Schilling, G.; Maier, R. Liebigs Ann. Chem. 1985, 2229–2239; (b) Köhn, A.;
Schmidt, R. R. Liebigs Ann. Chem. 1987, 1045–1054; (c) Prien, O.; Hoffman, H.;
Conde-Frieboes, K.; Krettek, T.; Berger, B.; Wagner, K.; Bolte, M.; Hoppe, D.
Synthesis 1994, 1313–1321; (d) Paquette, L. A.; Lobben, P. C. J. Org. Chem. 1998,
63, 5604–5616; (e) Canesi, S.; Berthiaume, G.; Deslongchamps, P. Eur. J. Org.
Chem. 2006, 3681–3686; (f) Altemöller, M.; Podlech, J. Eur. J. Org. Chem. 2009,
2275–2282.
15. The origin of the diastereoselectivity in this and related examples (Ref. 14) is
unclear. We are unaware of any computational or experimental studies that
address this phenomenon.
Scheme 5. Directed hydrogenation of 28-C29 alkene.
less a concern that the high affinity of Crabtree-type Ir(I) catalysts
for alcohols would result in sequestering of the catalyst by either
the diol or an alcohol-carbonate combination and prevent effective
reduction.
In the event, directed hydrogenation of diene 13 did provide the
desired configuration at C29,25 although a high loading of catalyst
(ca. 40 mol %) was indeed required. For the purposes of character-
ization, we found it helpful to convert diol 1 to the corresponding
bis-p-nitrobenzoate 14.
In summary, a differentially protected C21–C34 fragment of
antascomicin B has been prepared in a highly stereocontrolled se-
quence. The synthesis was 14 steps from the known trihydroxycyc-
lohexenone 6, or 19 steps from benzoquinone. Further progress
toward the antascomicins will be presented in due course.
Acknowledgments
NSF (CHE0616154, CHE0911638), NIH (P30RR031154), the
Arkansas Biosciences Institute, and the Arkansas Department of
Higher Education for a SURF fellowship (D.T.W.), and David R. Clay,
University of Arkansas, for help with data collection.
16. X-ray crystallographic analysis of a derivative confirmed the structure (see
Supplementary data).
17. Hong, S.-P.; Lindsay, H. A.; Yaramasu, T.; Zhang, X.; McIntosh, M. C. J. Org. Chem.
2002, 67, 2042–2055.
Supplementary data
18. For a review, see: Sibi, M. P. Org. Prep. Proced. Int. 1993, 25, 15–40.
19. For synthesis of the corresponding alcohol, see: Penner, M.; Rauniyar, V.;
Kaspar, L. T.; Hall, D. G. J. Am. Chem. Soc. 2009, 131, 14216–14217.
20. Kabalka, G. W.; Yang, D. T. C.; Baker, J. D., Jr. J. Org. Chem. 1976, 41, 574–575.
21. We speculate that this is a consequence of the larger number of Lewis basic
atoms that may complex the borane.
Supplementary data (experimental procedures, characteriza-
tion data, 1H and 13C NMR spectra of all new compounds; crystal
structure and cif file of compound 90, the C31 benzyloxycarbonyl
variant of compound 9) associated with this article can be found,
22. (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307–1370; (b)
Hoffman, R. W. Chem. Rev. 1989, 89, 1841–1860.
23. Myers, A. G.; Kukkola, P. J. J. Am. Chem. Soc. 1990, 112, 8208.
24. (a) Bueno, J. M.; Coteron, J. M.; Chiara, J. L.; Fernandez-Mayoralas, A.; Fiandor, J.
M.; Valle, N. Tetrahedron Lett. 2000, 41, 4379–4382; (b) Hanessian, S.; Mainetti,
E.; Lecomte, F. Org. Lett. 2006, 8, 4047–4049; (c) Watanabe, H.; Nakada, M.
Tetrahedron Lett. 2008, 49, 1518–1522; (d) Takahashi, K.; Akao, R.; Honda, T. J.
Org. Chem. 2009, 74, 3424–3429; See also: (e) Pettit, G. R.; Ducki, S.; Eastham, S.
A.; Melody, N. J. Nat. Prod. 2009, 72, 1279–1282.
References and notes
1. Isolation: Fehr, T.; Sanglier, J. J.; Schuler, W.; Gschwind, L.; Ponelle, M.;
Schilling, W.; Wioland, C. J. Antibiot. 1996, 49, 230–233.
2. Total synthesis: Brittain, D. E. A.; Griffiths-Jones, C. M.; Linder, M. R.; Smith, M.
D.; McCusker, C.; Barlow, J. S.; Akiyama, R.; Yasuda, K.; Ley, S. V. Angew. Chem.,
Int. Ed. 2005, 44, 2732–2737.
25. The C29 configuration was confirmed by the 10.0 Hz trans-diaxial coupling
between the C29 and C30 protons in bis-p-nitrobenzoate ester 14.