Macromolecules
ARTICLE
Russell, T. P. Science 2000, 290, 2126. (d) Tang, C. B.; Lennon, E. M.;
Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. Science 2008, 322, 429.
(2) See, for example: Ciebien, J. F.; Clay, R. T.; Sohn, B. H.; Cohen,
R. E. New J. Chem. 1998, 22, 685.
(3) See, for example: (a) Kataoka, K.; Harada, A.; Nagasaki, Y. Adv.
Drug Delivery Rev. 2001, 47, 113. (b) Saviꢀc, R.; Luo, L. B.; Eisenberg, A.;
Maysinger, D. Science 2003, 300, 615.
(16) The terms “pseudoblock copolymers” and “supramolecular
block copolymers” have been used in the literature to describe block
copolymers made of conventional blocks that are joined together by
noncovalent interactions; quasi-block copolymers are fundamentally
different in structure.
(17) Knoben, W.; Besseling, N. A. M.; Stuart, M. A. C. Macromole-
cules 2006, 39, 2643.
(4) Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; M€uller, M.; Ober, C.;
Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.;
Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.
(5) Hamley, I. W. The Physics of Block Copolymers; Oxford University
Press: Oxford, 1998.
(6) (a) Lehn, J. M. Prog. Polym. Sci. 2005, 30, 814. (b) Lehn, J. M.
Polym. Int. 2002, 51, 825.
(7) Castellano, R. K.; Rudkevich, D. M.; Rebek, J. Proc. Nat. Acad. Sci.
U. S. A. 1997, 94, 7132.
(8) (a) Schmid, S. A.; Abbel, R.; Schenning, A. P. H.; Meijer, E. W.;
Sijbesma, R. P.; Herz, L. M. J. Am. Chem. Soc. 2009, 131, 17696.
(b) Greef, T. F. A.; Meijer, E. W. Nature 2008, 453, 171. (c) Brunsveld,
L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001,
101, 4071. (d) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.;
Schenning, A.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687.
(e) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.;
Hirschberg, J.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science
1997, 278, 1601.
(9) (a) Schubert, U. S.; Eschbaumer, C. Angew. Chem., Int. Ed. 2002,
41, 2893. (b) Hofmeier, H.; Schubert, U. S. Chem. Soc. Rev. 2004,
33, 373. (c) Gohy, J. F. Coord. Chem. Rev. 2009, 253, 2214. (d) Fustin,
C. A.; Guillet, P.; Schubert, U. S.; Gohy, J. F. Adv. Mater. 2007, 19, 1665.
(10) (a) Burnworth, M.; Tang, L. M.; Kumpfer, J. R.; Duncan, A. J.;
Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Nature 2011, 472, 334.
(b) Fox, J. D.; Rowan, S. J. Macromolecules 2009, 42, 6823. (c) Sivakova,
S.; Rowan, S. J. Chem. Soc. Rev. 2005, 34, 9. (d) Beck, J. B.; Rowan, S. J.
J. Am. Chem. Soc. 2003, 125, 13922.
(18) (a) Folmer, B. J. B.; Cavini, E.; Sijbesma, R. P.; Meijer, E. W.
Chem. Commun. 1998, 1847. (b) Saville, P. M.; Sevick, E. M. Langmuir
1998, 14, 3137.
(19) (a) Wisse, E.; Spiering, A. J. H.; Pfeifer, F.; Portale, G.; Siesler,
H. W.; Meijer, E. W. Macromolecules 2009, 42, 524. (b) Wisse, E.;
Govaert, L. E.; Meijer, H. E. H.; Meijer, E. W. Macromolecules 2006,
39, 7425. (c) Ohkawa, H.; Ligthart, G.; Sijbesma, R. P.; Meijer, E. W.
Macromolecules 2007, 40, 1453.
(20) (a) Meier, M. A. R.; Wouters, D.; Ott, C.; Guillet, P.; Fustin,
C. A.; Gohy, J. F.; Schubert, U. S. Macromolecules 2006, 39, 1569.
(b) Chiper, M.; Winter, A.; Hoogenboom, R.; Egbe, D. A. M.; Wouters, D.;
Hoeppener, S.; Fustin, C. A.; Gohy, J. F.; Schubert, U. S. Macromolecules
2008, 41, 8823. (c) Ott, C.; Hoogenboom, R.; Hoeppener, S.; Wouters, D.;
Gohy, J. F.; Schubert, U. S. Soft Matter 2009, 5, 84. (d) Beck, J. B.;
Ineman, J. M.; Rowan, S. J. Macromolecules 2005, 38, 5060. (e) Yan, Y.;
Harnau, L.; Besseling, N. A. M.; de Keizer, A.; Ballauff, M.; Rosenfeldt,
S.; Stuart, M. A. C. Soft Matter 2008, 4, 2207. (f) Yan, Y.; Besseling,
N. A. M.; de Keizer, A.; Drechsler, M.; Fokkink, R.; Stuart, M. A. C.
J. Phys. Chem. B 2007, 111, 11662. (g) Vora, A.; Zhao, B. Q.; To, D.;
Cheng, J. Y.; Nelson, A. Macromolecules 2010, 43, 1199.
(21) Feldman, K. E.; Kade, M. J.; de Greef, T. F. A.; Meijer, E. W.;
Kramer, E. J.; Hawker, C. J. Macromolecules 2008, 41, 4694.
(22) (a) Al-Hussein, M.; de Jeu, W. H.; Lohmeijer, B. G. G.;
Schubert, U. S. Macromolecules 2005, 38, 2832. (b) Yang, X. W.; Hua,
F. J.; Yamato, K.; Ruckenstein, E.; Gong, B.; Kim, W.; Ryu, C. Y. Angew.
Chem., Int. Ed. 2004, 43, 6471. (c) Wrue, M. H.; McUmber, A. C.;
Anthamatten, M. Macromolecules 2009, 42, 9255.
(11) (a) Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L.
Nature 2008, 451, 977. (b) Montarnal, D.; Tournilhac, F.; Hidalgo, M.;
Couturier, J. L.; Leibler, L. J. Am. Chem. Soc. 2009, 131, 7966. (c) Serpe,
M. J.; Craig, S. L. Langmuir 2007, 23, 1626. (d) Xu, J.; Fogleman, E. A.;
Craig, S. L. Macromolecules 2004, 37, 1863. (e) Binder, W. H.; Bernstorff,
S.; Kluger, C.; Petraru, L.; Kunz, M. J. Adv. Mater. 2005, 17, 2824.
(f) Binder, W. H.; Zirbs, R. Adv. Polym. Sci. 2007, 207, 1. (g) Yagai, S.;
Kubota, S.; Saito, H.; Unoike, K.; Karatsu, T.; Kitamura, A.; Ajayaghosh,
A.; Kanesato, M.; Kikkawa, Y. J. Am. Chem. Soc. 2009, 131, 5408.
(h) Dobrawa, R.; W€urthner, F. J. Polym. Sci., Part A: Polym. Chem. 2005,
43, 4981. (i) Michelsen, U.; Hunter, C. A. Angew. Chem., Int. Ed. 2000,
39, 764. (j) Hunter, C. A.; Tomas, S. J. Am. Chem. Soc. 2006, 128, 8975.
(12) (a) Pinault, T.; Andrioletti, B.; Bouteiller, L. Beilstein J. Org.
Chem. 2010, 6, 869. (b) Pinault, T.; Cannizzo, C.; Andrioletti, B.;
Ducouret, G.; Lequeux, F.; Bouteiller, L. Langmuir 2009, 25, 8404.
(c) Shikata, T.; Nishida, T.; Isare, B.; Linares, M.; Lazzaroni, R.;
Bouteiller, L. J. Phys. Chem. B 2008, 112, 8459. (d) Bellot, M.; Bouteiller,
L. Langmuir 2008, 24, 14176. (e) Bouteiller, L. Adv. Polym. Sci. 2007,
207, 79. (f) Pinault, T.; Isare, B.; Bouteiller, L. ChemPhysChem 2006,
7, 816. (g) Lortie, F.; Boileau, S. B.; Bouteiller, L.; Chassenieux, C.;
Laupr^etre, F. Macromolecules 2005, 38, 5283. (h) Bouteiller, L.;
Colombani, O.; Lortie, F.; Terech, P. J. Am. Chem. Soc. 2005, 127, 8893.
(i) Simic, V.; Bouteiller, L.; Jalabert, M. J. Am. Chem. Soc. 2003,
125, 13148. (j) Lortie, F.; Boileau, S.; Bouteiller, L.; Chassenieux, C.;
Deme, B.; Ducouret, G.; Jalabert, M.; Laupr^etre, F.; Terech, P. Langmuir
2002, 18, 7218.
(23) Daoulas, K. C.; Cavallo, A.; Shenhar, R.; M€uller, M. Soft Matter
2009, 5, 4499.
(24) Daoulas, K. C.; Cavallo, A.; Shenhar, R.; M€uller, M. Phys. Rev.
Lett. 2010, 105, 108301.
(25) Solutions containing lower concentrations of EHUT featured
poor signal-to-noise ratios, which prevented accurate determination of
the A3344/A3300 ratios.
(26) (a) Robertson, C. G.; Hogan, T. E.; Rackaitis, M.; Puskas, J. E.;
Wang, X. J. Chem. Phys. 2010, 132, 104904. (b) Roth, C. B.; Torkelson,
J. M. Macromolecules 2007, 40, 3328.
(27) The formation of the tubular form in solution was shown to
depend on the ability to host solvent molecules that fit the dimensions of
the cavity, such as toluene, but not chloroform.12f Since the preparation
conditions of most of the films for IR measurements did not involve the
usage of toluene, we attribute the formation of the tubular form in all the
melts containing pure EHUT or PS/EHUT and in the melts of the other
systems at higher EHUT contents to the high concentration of
supramolecular monomers in the melt, which leads to the formation
of longer polymers and thus to a diminished enthalpic penalty incurred
by the “open” ends.12h
(28) Daoulas, K. C.; M€uller, M. J. Chem. Phys. 2006, 125, 184904.
(29) (a) Daoulas, K. C.; M€uller, M. Adv. Polym. Sci. 2010, 224, 197.
(b) Detcheverry, F. A.; Kang, H. M.; Daoulas, K. C.; M€uller, M.; Nealey,
P. F.; de Pablo, J. J. Macromolecules 2008, 41, 4989.
(30) Rossky, P. J.; Doll, J. D.; Friedman, H. L. J. Chem. Phys. 1978,
69, 4628.
(31) Colombani, O.; Bouteiller, L. New J. Chem. 2004, 28, 1373.
(13) (a) Lee, W. B.; Elliott, R.; Katsov, K.; Fredrickson, G. H.
Macromolecules 2007, 40, 8445. (b) Feng, E. H.; Lee, W. B.; Fredrickson,
G. H. Macromolecules 2007, 40, 693. (c) Hoy, R. S.; Fredrickson, G. H.
J. Chem. Phys. 2009, 131, 224902. (d) Elliott, R.; Fredrickson, G. H.
J. Chem. Phys. 2009, 131, 144906.
(14) Wittmer, J. P.; Milchev, A.; Cates, M. E. J. Chem. Phys. 1998,
109, 834.
(15) Milchev, A.; Landau, D. P. J. Chem. Phys. 1996, 104, 9161.
9781
dx.doi.org/10.1021/ma201395h |Macromolecules 2011, 44, 9773–9781