ORGANIC
LETTERS
2011
Vol. 13, No. 24
6422–6425
The N-Aryl Aminocarbonyl
ortho-Substituent Effect in Cu-Catalyzed
Aryl Amination and Its Application in the
Synthesis of 5-Substituted
11-Oxo-dibenzodiazepines
Xiaoqiong Diao,† Lanting Xu,† Wei Zhu, Yongwen Jiang,‡ Haoyang Wang,‡
Yinlong Guo,‡ and Dawei Ma*,‡
Department of Chemistry, Fudan University, Shanghai 200433, China, and State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
Received October 11, 2011
ABSTRACT
Double amination of ortho-substituted aryl bromides proceeded under mild conditions to afford 5-substituted 11-oxo-dibenzodiazepines, which
revealed that there is a strong ortho-substituent effect caused by N-aryl aminocarbonyl groups during copper-catalyzed aryl amination.
A considerable number of bioactive compounds contain
an 11-oxo-dibenzodiazepine moiety, including the clinical
antidepressant dibenzepin (1, Figure 1), nonpeptidyl en-
dothelin receptor antagonist 2,1 histone deacetylase inhi-
bitor 3,2 muscarinic acetylcholine receptor modulator 4,3
potent and selective Chk-1 inhibitor5,4 and potential agent
for the treatment of angiogenesis-related indications 6.5
The classical approach for assembling these compounds is
dependent on the selective alkylation1À3 of 1,6-unsubstituted
11-oxo-dibenzodiazepines of general structure 8. These tri-
cyclic heterocycles typically require several steps for their
preparation, beginning with the copper-catalyzed coupling
reactions of anthranilic acids with 2-halonitrobenzenes (or
2-halobenzoic acids with o-phenylendiamines).1À6 The clas-
sical approach suffers both from length of sequence from
commercially available starting materials and generally
(6) (a) Giani, R. P.; Borsa, M.; Parini, E.; Tonon, G. C. Synthesis
1985, 550. (b) Al-Tel, T. H.; Al-Qawasmeh, R. A.; Schmidt, M. F.; Al-
Aboudi, A.; Rao, S. N.; Sabri, S. S.; Voelter, W. J. Med. Chem. 2009, 52,
† Fudan University.
ꢀ
6484. (c) Leyva-Perez, A.; Cabrero-Antonino, J. R.; Corma, A. Tetra-
‡ Chinese Academy of Sciences.
hedron 2010, 66, 8203.
(1) Murugesan, N.; Gu, Z.; Lee, V.; Webb, M. L.; Liu, E. C.-K.;
Hermsmeier, M.; Hunt, J. T. Bioorg. Med. Chem. Lett. 1995, 5, 253.
(2) Binaschi, M.; Boldetti, A.; Gianni, M.; Maggi, C. A.; Gensini, M.;
Bigioni, M.; Parlani, M.; Giolitti, A.; Fratelli, M.; Valli, C.; Terao, M.;
Garattini, E. ACS Med. Chem. Lett. 2010, 1, 411.
(7) (a) Ma, D.; Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Liu, X. Angew.
Chem., Int. Ed. 2011, 50, 1118. (b) Ma, D.; Geng, Q.; Zhang, H.; Jiang,
Y. Angew. Chem., Int. Ed. 2010, 49, 1291. (c) Ma, D.; Xie, S.; Xue, P.;
Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009, 48, 4222.
(d) Wang, B.; Lu, B.; Jiang, Y.; Zhang, Y.; Ma, D. Org. Lett. 2008, 10,
2761. (e) Zou, B.; Yuan, Q.; Ma, D. Org. Lett. 2007, 9, 4291. (f) Zou, B.;
Yuan, Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46, 2598.
(3) Eberlein, W. G.; Trummlitz, G.; Engel, W. W.; Schmidt, G.;
Pelzer, H.; Mayer, N. J. Med. Chem. 1987, 30, 1378.
(4) Wang, L.; Sullivan, G. M.; Hexamer, L. A.; Hasvold, L. A.;
Thalji, R.; Przytulinska, M.; Tao, Z.-F.; Li, G.; Chen, Z.; Xiao, Z.; Gu,
W.-Z.; Xue, J.; Bui, M.-H.; Merta, P.; Kovar, P.; Bouska, J. J.; Zhang,
H.; Park, C.; Stewart, K. D.; Sham, H. L.; Sowin, T. J.; Rosenberg, S. H.;
Lin, N.-H. J. Med. Chem. 2007, 50, 4162.
(8) For selected recent examples from other groups, see: (a) Liu, X.;
Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2009, 48, 348. (b) Bao,
W.; Liu, Y.; Lv, X.; Qian, W. Org. Lett. 2008, 10, 3899. (c) Coste, A.;
Toumi, M.; Wright, K.; Razafimahaleo, V.; Couty, F.; Marrot, J.;
Evano, G. Org. Lett. 2008, 10, 3841. (d) Martin, R.; Rodrı
´
guez, R.;
(5) Hansen, A. J.; Jorgensen, T. K.; Olsen, U. B. WO 2000032193, 2000.
Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 7079.
r
10.1021/ol202721h
Published on Web 11/16/2011
2011 American Chemical Society