Journal of the American Chemical Society
Page 4 of 5
6, 290.
As the results have pointed out that the genuine catalytic
species for the hydrosilylation reactions might be produced
from the reaction of cobalt(I) amide species with one (or
more) equivalent of HSi(OEt)3, one could speculate its iden-
tity as a low-coordinate cobalt(I) hydride or a cobalt(I) silyl
species. The latter could be formed from the reaction of co-
balt(I) hydride with one equivalent of HSi(OEt)3 after elimi-
nating H2.16 At this stage, the exact identity of the genuine
catalytically active species is difficult to confirm. However,
the observation of the dehydrogenative silylation product n-
C6H13CH=CHSi(OEt)3 in these cobalt-catalyzed reactions
(Table 1, entries 1-3) implies the involvement of cobalt silyl
intermediates,1 whose interaction with n-octene could give β-
silylalkyl cobalt species that could further undergo β-H elim-
ination to give the dehydrogenative silylation product. On
the other hand, it is noted that the low-coordinate cobalt(0)
(2) For examples, please see: (a) Bart, S. C.; Lobkovsky, E.; Chirik, P.
J. J. Am. Chem. Soc. 2004, 126, 13794. (b) Tondreau, A. M.; Atien-
za, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.;
Chirik, P. J. Science 2012, 335, 567. (c) Sunada, Y.; Noda, D.;
Soejima, H.; Tsutsumi, H.; Nagashima, H. Organometallics 2015,
34, 2896. (d) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1965, 87,
1133. (e) Seitz, F.; Wrighton, M. S. Angew. Chem., Int. Ed. Engl.
1988, 27, 289. (f) Atienza, C. C. H.; Diao, T, Weller, K. J.; Nye, S.
A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J.
J. Am. Chem. Soc. 2014, 136, 12108. (g) Chen, C.; Hecht, M. B.;
Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J., Hol-
land, P. L. J. Am. Chem. Soc. 2015, 137, 13244. (h) Ibrahim, A. D.;
Entsminger, S. W.; Zhu, L.; Fout, A. R. ACS Catal. 2016, 6, 3589.
(i) Rivera-Hernández, A.; Fallon, B. J.; Ventre, S.; Simon, C.;
Tremblay, M.; Gontard, G.; Derat, E.; Amatore, M.; Aubert, C.;
Petit, M. Org. Lett. 2016, 18, 4242. (j) Chu, W.; Gilbert-Wilson,
R.; Rauchfuss, T. B. Organometallics 2016, 35, 2900.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
complex [(IPr)Co(η2-vtms)2] (8) (vtms
=
vinyltrime-
(3) There are also recent reports using nickel(II) complexes as cata-
lysts for hydrosilylation. For examples, see: (a) Buslov, I.;
Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew.
Chem., Int. Ed. 2015, 54, 14523. (b) Pappas, I.; Treacy, S.; Chirik, P.
J. ACS Catal. 2016, 6, 4105.
thylsilane)17 is ineffective in promoting the hydrosilylation
reaction, which excludes the involvement of cobalt(0) species
as the genuine catalytically active species.
In summary, we found that cobalt(II) amide complexes can
serve as catalysts for the hydrosilylation of alkenes with ter-
tiary silanes, obviating the use of external activator. Mecha-
nistic studies disclosed that hydrosilane can react with co-
balt(II) bis(amide) complex to form cobalt(I) amide and co-
balt(I) hydride species, and that low-coordinate cobalt(I)
species could be the genuine catalysts for the alkene hydrosi-
lylation reaction. New catalyst design for alkene hydrosi-
lyation employing the unique catalyst-activation mode is
ongoing.
(4) (a) Tondreau, A. M.; Atienza, C. C. H.; Darmon, J. M.; Milsmann,
C.; Hoyt, H. M.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Boyer, J.;
Delis, J. G. P.; Lobkovsky, E.; Chirik, P. J. Organometallics 2012,
31, 4886. (b) Mo, Z.; Liu, Y.; Deng, L. Angew. Chem., Int. Ed. 2013,
52, 10845. (c) Noda, D.; Tahara, A.; Sunada, Y.; Nagashima, H. J.
Am. Chem. Soc. 2016, 138, 2480. (d) Schuster, C. H.; Diao, T.;
Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632. (e) Du, X.;
Zhang, Y.; Peng, D.; Huang, Z. Angew. Chem., Int. Ed. 2016, 55,
6671. (f) Wang, C.; Teo, W. J.; Ge, S. ACS Catal. 2017, 7, 855.
(5) Yang, J.; Tilley, T. D. Angew. Chem., Int. Ed. 2010, 49, 10186.
(6) For examples of cobalt catalyzed alkene isomerization and hy-
drogenation reactions, please see refs. 1d, 2f, 2g, and (a) Chen, C.;
Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am.
Chem. Soc. 2014, 136, 945. (b) Chen, J.; Chen C.; Ji, C.; Lu, Z.; Org.
Lett. 2016, 18, 1594. (c) Tokmic, K.; Markus, C. R.; Zhu, L.; Fout,
A. R. J. Am. Chem. Soc. 2016, 138, 11907. (d) Raya, B.; Biswas, S.;
RajanBabu, T. V. ACS Catal. 2016, 6, 6318.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: xxxxxxxxx.
Crystallographic data (CIF)
Experimental procedures, characterization data of the com-
pounds, and NMR spectra (PDF)
(7) Day, B. M.; Pal, K.; Pugh, T.; Tuck, J.; Layfield, R. A. Inorg. Chem.
2014, 53, 10578.
(8) For experimental details on the preparation and characterization
data of new compounds, please see Supporting Information.
(9) During the reviewing process of this work, Danopoulos and
Braunstein reported the preparation of 6 via the reaction of
[(IPr)Co(N(SiMe3)2)Cl] with KC8: Danopoulos, A. A.; Braunstein,
P.; Monakhov, K. Y.; van Leusen, J.; Kögerler, P.; Clémancey, M.;
Latour, J.-M.; Benayad, A.; Tromp, M.; Rezabalh, E.; Frison, G.
Dalton Trans. 2017, DOI: 10.1039/c6dt03565e.
(10) Hicks, J.; Jones, C. Organometallics 2015, 34, 2118.
(11) (a) Corey, J. Y. Chem. Rev. 2011, 111, 863. (b) Corey, J. Y. Chem.
Rev. 2016, 116, 11291.
(12) For examples, see: (a) Aresta, M.; Rossi, M.; Sacco, A. Inorg.
Chim. Acta 1969, 3, 227. (b) Ung, G.; Peters, J. C. Angew. Chem.,
Int. Ed. 2015, 54, 532.
(13) For homoleptic cobalt(II)-H bond cleavage, please see: Krafft, M.
J.; Bubrin, M.; Paretzki, A.; Lissner, F.; Fiedler, J.; Záliš, S.; Kaim,
W. Angew. Chem., Int. Ed. 2013, 52, 6781.
(14) Mo, Z.; Xiao, J.; Gao, Y.; Deng, L. J. Am. Chem. Soc. 2014, 136,
17414.
(15) The Si-N bond in Me3Si–N(SiMe3)2 has a bond enthalpy of 108
kcal/mol, whereas that of the N-H bond in H-NMe2 is ca. 95
kcal/mol. For the data, see: Luo, Y.-R. Comprehensive Handbook
of Chemical Bond Energies; Boca Raton: CRC Press, 2007.
(16) Analogous transformations have been known for cobalt(I) phos-
phine complexes, see: (a) Archer, N. J.; Haszeldine, R. N.; Parish,
R. V. J. Chem. Soc. D 1971, 524. (b)Archer, N. J.; Haszeldine, R. N.;
Parish, R. V. J. Chem. Soc., Dalton Trans. 1979, 695.
AUTHOR INFORMATION
Corresponding Author
* E-mail: deng@sioc.ac.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
The work was supported by the National Key Research and
Development Program (2016YFA0202900), the National Nat-
ural Science Foundation of China (Nos. 21690062, 21421091
and 21432001), and the Strategic Priority Research Program of
the Chinese Academy of Sciences (XDB20000000).
REFERENCES
(1) For reviews, please see: (a) Marciniec, B.; Maciejewski, H.; Pie-
traszuk, C.; Pawluć, P. In Hydrosilyaltion: A Comprehensive Re-
view on Recent Advances; Marciniec, B., Ed.; Springer: Berlin,
2009; Chapter 1. (b) Zhang, M.; Zhang, A. Appl. Organometal.
Chem. 2010, 24, 751. (c) Greenhalgh, M. D.; Jones, A. S.; Thomas,
S. P. ChemCatChem 2015, 7, 190. (d) Pellissier, H.; Clavier, H.
Chem. Rev. 2014, 114, 2775. (e) Sun, J.; Deng, L. ACS Catal. 2016,
(17) Du, J.; Wang, L.; Xie, M.; Deng, L. Angew. Chem., Int. Ed. 2015,
54, 12640.
ACS Paragon Plus Environment