2011, 47, 3828; (c) S.-K. Xiang, B. Zhang, L.-H. Zhang, Y. Cui and
N. Jiao, Chem. Commun., 2011, 47, 5007.
4 Intermolecular iminium/enamine cascade reactions on enals:
(a) Y. Huang, A. M. Walji, C. H. Larsen and D. W. C. MacMillan,
J. Am. Chem. Soc., 2005, 127, 15051; (b) M. Marigo, T. Schulte,
J. Franzen and K. A. Jørgensen, J. Am. Chem. Soc., 2005, 127, 15710;
(c) J. Yang, W. M. T. Hechavarria Fonseca and B. List, J. Am. Chem.
Soc., 2005, 127, 15036; (d) H. Jiang, J. B. Nielsen, M. Nielsen and
K. A. Jørgensen, Chem.–Eur. J., 2007, 13, 9068; (e) P. Galzerano,
F. Pesciaioli, A. Mazzanti, G. Bartoli and P. Melchiorre, Angew.
Chem., Int. Ed., 2009, 48, 7892; (f) B. Simmons, A. M. Walji and
D. W. C. MacMillan, Angew. Chem., Int. Ed., 2009, 48, 4349;
(g) C. Appayee and S. E. Brenner-Moyer, Org. Lett., 2010, 12, 3356.
5 Selected reviews on aminocatalyzed 1,4 addition: (a) S. Sulzer-Mosse
and A. Alexakis, Chem. Commun., 2007, 3123; (b) D. Almasi,
D. A. Alonso and C. Najera, Tetrahedron: Asymmetry, 2007, 18,
299; (c) S. B. Tsogoeva, Eur. J. Org. Chem., 2007, 1701; (d) D.
Roca-Lopez, D. Sadaba, I. Delso, R. P. Herrera, T. Tejero and
P. Merino, Tetrahedron: Asymmetry, 2010, 21, 2561.
Scheme 5 Class 3 nucleophiles: no organocascade.
of the organocascade was recovered. Good to excellent
enantioselectivities (95–99% ee) were obtained in this process
giving rise to highly valuable synthons such as 12e, a 1,3 amino
alcohol that should be applied as a precursor of indolizidine.12
Finally, several carbon nucleophiles failed to give organo-
cascade products and are classified in class 3 (Scheme 5).13
They all have the same particularity of giving slow conversion
in the iminium catalysis. This can explain the bad results
observed in organocascade. Indeed, if the iminium reaction
is rather slow, it is possible that the retro-Michael occurs faster
than the electrophilic trapping. This reduces the amount of
enamine present in the mixture and increases potential side
reactions. Furthermore, increasing the steric hindrance notably
with compounds 13a–13e probably slows down the enamine
reaction.
6 A. Quintard, A. Alexakis and C. Mazet, Angew. Chem., Int. Ed.,
2011, 50, 2354.
7 (a) S. Mosse and A. Alexakis, Org. Lett., 2005, 7, 4361; (b) Q. Zhu
and Y. Lu, Org. Lett., 2008, 10, 4803; (c) A. Quintard,
C. Bournaud and A. Alexakis, Chem.–Eur. J., 2008, 14, 7504;
(d) Q. Zhu, L. Cheng and Y. Lu, Chem. Commun., 2008, 6315;
(e) A. Landa, M. Maestro, C. Masdeu, A. Puente, S. Vera,
M. Oiarbide and C. Palomo, Chem.–Eur. J., 2009, 15, 1562;
(f) A. Quintard and A. Alexakis, Chem.–Eur. J., 2009, 15, 11109;
(g) S. Sulzer-Mosse, A. Alexakis, J. Mareda, G. Bollot,
G. Bernardinelli and Y. Filinchuk, Chem.–Eur. J., 2009, 15,
3204; (h) A. Quintard, S. Belot, E. Marchal and A. Alexakis,
Eur. J. Org. Chem., 2010, 927; (i) A. Quintard and A. Alexakis,
Chem. Commun., 2010, 46, 4085; (j) Q. Zhu and Y. Lu, Chem.
Commun., 2010, 46, 2235; (k) A. Quintard and A. Alexakis, Adv.
Synth. Catal., 2010, 352, 1856; (l) C. Bournaud, E. Marchal,
A. Quintard, S. Sulzer-Mosse and A. Alexakis, Tetrahedron:
Asymmetry, 2010, 21, 1666; (m) J. Xiao, Y.-L. Liu and
T.-P. Loh, Synlett, 2010, 2029; (n) P. J. Chua, B. Tan, L. Yang,
X. Zeng, D. Zhu and G. Zhong, Chem. Commun., 2010, 46, 7611;
(o) S. A. Moteki, S. Xu, S. Arimitsu and K. Maruoka, J. Am.
Chem. Soc., 2010, 132, 17074; (p) A. Quintard and A. Alexakis,
Org. Biomol. Chem., 2011, 9, 1407; (q) J. Xiao, Y.-P. Lu, Y.-L. Liu,
P.-S. Wong and T.-P. Loh, Org. Lett., 2011, 13, 876.
8 Recent reviews on the use of sulfones in organocatalysis:
(a) M. Nielsen, C. B. Jacobsen, N. Holub, M. W. Paixao and
K. A. Jørgensen, Angew. Chem., Int. Ed., 2010, 49, 2668;
(b) Q. Zhu and Y. Lu, Aust. J. Chem., 2009, 62, 951; (c) A.-N. R.
Alba, X. Companyo and R. Rios, Chem. Soc. Rev., 2010, 39, 2018.
9 (a) S. Bertelsen, P. Diner, R. L. Johansen and K. A. Jørgensen,
J. Am. Chem. Soc., 2007, 129, 1536; (b) N. R. Andersen,
S. G. Hansen, S. Bertelsen and K. A. Jørgensen, Adv. Synth.
Catal., 2009, 351, 3193.
This hypothesis of fast retro-Michael compared to electro-
philic trapping was confirmed when performing a two-pot
reaction with compounds 13b–13d. Even though the electro-
phile was added after isolation of the transient aldehyde, an
unidentified mixture of compounds was obtained, probably
arising from initial retro-iminium and subsequent product
decompositions. The importance of the kinetic stability of
the transient iminium adduct was further confirmed when
performing the enamine trapping with racemic iminium
adducts derived from Angelica lactone where a resolution of
the aldehyde was observed.14
In conclusion we have developed an unprecedented inter-
molecular iminium/enamine Michael addition on enals taking
advantage of the high reactivity of vinyl sulfones. This powerful
organocascade allows for the rapid construction of highly
attractive synthons in high enantioselectivities (typically
99% ee). The described study has allowed for a clear under-
standing of both reactivity and selectivity issues. We are
convinced that it will find further applications in total synthesis
and in the development of other organocascade reactions.
Notes and references
10 For the iminium catalyzed addition of triazole: (a) P. Diner,
M. Nielsen, M. Marigo and K. A. Jørgensen, Angew. Chem., Int.
Ed., 2007, 46, 1983; For the iminium catalyzed addition of
Angelica lactone: (b) A. Quintard, A. Lefranc and A. Alexakis,
Org. Lett., 2011, 13, 1540.
1 For selected review on organocascade reactions see:
(a) A. M. Walji and D. W. C. MacMillan, Synlett, 2007, 1477;
(b) D. Enders, C. Grondal and M. R. M. Huttl, Angew. Chem., Int.
Ed., 2007, 46, 1570; (c) G. Guillena, D. J. Ramon and M. Yus,
Tetrahedron: Asymmetry, 2007, 18, 693; (d) C. Grondal, M. Jeanty
and D. Enders, Nat. Chem., 2010, 2, 167.
2 Selected reviews on aminocatalysis: (a) S. Bertelsen and
K. A. Jørgensen, Chem. Soc. Rev., 2009, 38, 2178; (b) D. W. C.
MacMillan, Nature, 2008, 455, 304; (c) P. Melchiorre, M. Marigo,
A. Carlone and G. Bartoli, Angew. Chem., Int. Ed., 2008, 47, 6138;
(d) P. I. Dalko, Enantioselective Organocatalysis, Wiley-VCH,
Weinheim, 2007; (e) A. Erkkilae, I. Majander and P. M. Pihko,
Chem. Rev., 2007, 107, 5416.
11 For the iminium catalyzed addition of thiol: ref. 4(b); for the
iminium catalyzed addition of 11: (a) Y. K. Chen, M. Yoshida and
D. W. C. MacMillan, J. Am. Chem. Soc., 2006, 128, 9328.
12 X. Pu and D. Ma, J. Org. Chem., 2003, 68, 4400.
13 For pioneering iminium addition of 13a: (a) A. Landa, A. Puente,
J. I. Santos, S. Vera, M. Oiarbide and C. Palomo, Chem.–Eur. J.,
2009, 15, 11954; 13b: (b) J. L. Garcia Ruano, V. Marcos and
J. Aleman, Chem. Commun., 2009, 4435; (c) A.-N. Alba,
X. Companyo, A. Moyano and R. Rios, Chem.–Eur. J., 2009,
15, 11095; 13e: (d) J. F. Austin and D. W. C. MacMillan, J. Am.
Chem. Soc., 2002, 124, 1172; 13f: (e) N. Halland, R. G. Hazell and
K. A. Jørgensen, J. Org. Chem., 2002, 67, 8331. The addition of 13c
and 13d was precedently unreported in the literature.
3 For recently appeared examples without incorporation of hetero-
atoms (without potential leaving groups) see: (a) Y. Chi,
S. T. Scroggins and J. M. J. Frechet, J. Am. Chem. Soc., 2008,
130, 6322; (b) M. Rueping, K. L. Haack, W. Ieawsuwan,
H. Sunden, M. Blanco and F. R. Schoepke, Chem. Commun.,
14 See ESIw for details.
c
7214 Chem. Commun., 2011, 47, 7212–7214
This journal is The Royal Society of Chemistry 2011