6708
C. B. Zartman et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6705–6708
oral bioavailability in rat and dog, with low plasma clearance and
good plasma half-lives in both species.
Table 3
Effect of magnesium on CGRP and selected CGRP receptor antagonists
In conclusion, a novel series of CGRP receptor antagonists has
been characterized. Optimization of naphthyridine 5 led to the or-
ally bioavailable hydroxypyridine 16, which possessed a 10-fold
improvement in functional potency. Compound 16 interacted with
the CGRP receptor in a magnesium-dependent fashion at a binding
site that involved TM7 and was independent of RAMP1. As such,
this CGRP receptor antagonist is both structurally and functionally
distinct from previously reported small molecule antagonists of
this receptor.
Compd
Ki, nMa 5 mM MgCl2
Ki, nMa 0 mM MgCl2
Shift
4
16
21
9 (2)
8 (2)
0.9
>35
6.7
0.8
1
2700 (3)
840 (1)
5.5 (1)
0.01 (1)
>100,000 (3)
5600 (1)
4.5 (1)
CGRP (8–37)
CGRP
0.01 (1)
a
Number of replicates given in parentheses. Ki values determined in the presence
and absence of 5 mM MgCl2 for the inhibition of 125I-CGRP binding to SK-N-MC cell
membranes.
Acknowledgments
The authors thank Yvonne M. Leonard, Cynthia Miller-Stein and
Audrey Wallace for animal dosing and pharmacokinetic analysis;
the MRL West Point analytical, mass spectrometry and NMR spec-
troscopy groups for analytical and spectroscopy data; and Neville
Anthony, Scott Ceglia, Robert Gomez and John Wai for providing
compounds 5, 6 and 9 and for helpful discussions.
References and notes
1. Amara, S. G.; Jonas, V.; Rosenfeld, M. G.; Ong, E. S.; Evans, R. M. Nature 1982,
298, 240.
2. Ho, T. W.; Goadsby, P. J. Nat. Rev. Neurol. 2010, 6, 573.
3. McLatchie, L.; Fraser, N.; Main, M.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.;
Lee, M.; Foord, S. Nature (London) 1998, 393, 333.
4. Christopoulos, G.; Perry, K. J.; Morfis, M.; Tilakaratne, N.; Gao, Y.; Fraser, N. J.;
Main, M. J.; Foord, S. M.; Sexton, P. M. Mol. Pharmacol. 1999, 56, 235.
5. Goadsby, P. J. Drugs 2005, 65, 2557.
6. Rudolf, K.; Eberlein, W.; Engel, W.; Pieper, H.; Entzeroth, M.; Hallermayer, G.;
Doods, H. J. Med. Chem. 2005, 48, 5921.
7. Olesen, J.; Diener, H.-C.; Husstedt, I. W.; Goadsby, P. J.; Hall, D.; Meier, U.;
Pollentier, S.; Lesko, L. M. N. Eng. J. Med. 2004, 350, 1104.
8. Paone, D. V.; Shaw, A. S.; Nguyen, D. N.; Burgey, C. S.; Deng, J. Z.; Kane, S. A.;
Koblan, K. S.; Salvatore, C. A.; Mosser, S. D.; Johnston, V. K.; Wong, B. K.; Miller-
Stein, C. M.; Hershey, J. C.; Graham, S. L.; Vacca, J. P.; Williams, T. M. J. Med.
Chem. 2007, 50, 5564.
Scheme 1. Synthesis of compound 16. Reagents and conditions: (a) TEA, meth-
anesulfonyl chloride, THF, 5 °C, 95%; (b) N,N-diisopropylamine, 1,10-phenanthro-
line, n-BuLi in hexanes, THF, À20 °C to rt, 77%; (c) H2SO4, CH3OH, 79%; (d) Br2, H2O,
79%; (e) Cu(I)O, pyridine, 130 °C; then EDTA, CH2Cl2, H2O; (f) H2SO4, CH3OH, 34%
over two steps; (g) NBS, CH3Cl, 80 °C, 47%; and (h) 3,5-difluorobenzylamine,
toluene, reflux, 42%.
9. Ho, T. W.; Ferrari, M. D.; Dodick, D. W.; Galet, V.; Kost, J.; Fan, X.; Leibensperger,
H.; Froman, S.; Assaid, C.; Lines, C.; Koppen, H.; Winner, P. K. Lancet 2008, 372,
2115.
Table 4
Pharmacokinetic data for compound 16
10. Bell, I. M.; Gallicchio, S. N.; Wood, M. R.; Quigley, A. G.; Stump, C. A.; Zartman,
C. B.; Fay, J. F.; Li, C.-C.; Lynch, J. J.; Moore, E. L.; Mosser, S. D.; Prueksaritanont,
T.; Regan, C. P.; Roller, S.; Salvatore, C. A.; Kane, S. A.; Vacca, J. P.; Selnick, H. G.
ACS Med. Chem. Lett. 2010, 1, 24.
Species
F (%)
iv t1/2 (h)
Cl (mL/min/kg)
Vdss (L/kg)
Rat
Dog
26a
13b
5.4c
7.1d
1.1
5.1
0.4
3.0
11. Hewitt, D. J.; Aurora, S. K.; Dodick, D. W.; Goadsby, P. J.; Ge, Y.; Bachman, R.;
Taraborelli, D.; Fan, X.; Assaid, C.; Lines, C.; Ho, T. W. Cephalalgia 2011, 31, 712.
12. Diener, H.-C.; Barbanti, P.; Dahlöf, C.; Reuter, U.; Habeck, J.; Podhorna, J.
Cephalalgia 2011, 31, 573.
13. Hazuda, D. J.; Anthony, N. J.; Gomez, R. P.; Jolly, S. M.; Wai, J. S.; Zhuang, L.;
Fisher, T. E.; Embry, M.; Guare, J. P.; Egbertson, M. S.; Vacca, J. P.; Huff, J. R.;
Felock, P. J.; Witmer, M. V.; Stillmock, K. A.; Danovich, R.; Grobler, J.; Miller, M.
D.; Espeseth, A. S.; Jin, L.; Chen, I.-W.; Lin, J. H.; Kassahun, K.; Ellis, J. D.; Wong,
B. K.; Xu, W.; Pearson, P. G.; Schleif, W. A.; Cortese, R.; Emini, E.; Summa, V.;
Holloway, M. K.; Young, S. D. PNAS 2004, 101, 11233.
14. Salvatore, C. A.; Hershey, J. C.; Corcoran, H. A.; Fay, J. F.; Johnston, V. K.; Moore,
E. L.; Mosser, S. D.; Burgey, C. S.; Paone, D. V.; Shaw, A. W.; Graham, S. L.; Vacca,
J. P.; Williams, T. M.; Koblan, K. S.; Kane, S. A. J. Pharmacol. Exp. Ther. 2008, 324,
416.
15. Salvatore, C. A.; Moore, E. L.; Calamari, A.; Cook, J. J.; Michener, M. S.; O’Malley,
S.; Miller, P. J.; Sur, C.; Williams, D. L.; Zeng, Z.; Danziger, A.; Lynch, J. J.; Regan,
C. P.; Fay, J. F.; Tang, Y. S.; Li, C.-C.; Pudvah, N. T.; White, R. B.; Bell, I. M.;
Gallicchio, S. N.; Graham, S. L.; Selnick, H. G.; Vacca, J. P.; Kane, S. A. J.
Pharmacol. Exp. Ther. 2010, 333, 152.
a
b
c
Dosed at 10 mpk in 1% methylcellulose.
Dosed at 1 mpk in 1% methylcellulose.
Dosed at 2 mpk in DMSO.
d
Dosed at 0.5 mpk in DMSO.
(Ki = 7500 nM).14 Additionally, 2 had reduced affinity for non-pri-
mate CGRP receptors such as the rat receptor (Ki = 1200 nM), and
much of this species selectivity was dictated by sequence differ-
ences in RAMP1, notably by residue 74.17,18 Unsurprisingly, since
16 does not appear to interact with RAMP1, it did not exhibit sig-
nificantly lower affinity for the rat CGRP receptor (Ki = 6800 nM).16
The synthesis of compound 16, which is representative of the
methodology used to synthesize the related analogs in Table 2, is
shown in Scheme 1.19 The cyclic sultam was synthesized in two
steps20 from commercially available 3-bromopropan-1-amine
hydrobromide and the methyl 6-bromo-3-hydroxypyridine-2-
carboxylate was obtained in two steps from commercially avail-
able 3-hydroxypyridine-2-carboxylic acid. An Ullmann coupling
of the two followed by bromination with NBS and direct amidation
of the ester with amines yielded compound 16 and closely related
analogs. Amidation with tert-butyl glycinate followed by hydroly-
sis and standard amide couplings allowed for the synthesis of re-
lated amides 19–21.
16. Salvatore, C. A.; Mallee, J. J.; Bell, I. M.; Zartman, C. B.; Williams, T. M.; Koblan,
K. S.; Kane, S. A. Biochemistry 2006, 45, 1881.
17. Miller, P. S.; Barwell, J.; Poyner, D. R.; Wigglesworth, M. J.; Garland, S. L.;
Donnelly, D. Biochem. Biophys. Res. Commun. 2010, 391, 437.
18. Moore, E. L.; Gingel, J. J.; Kane, S. A.; Hay, D. L.; Salvatore, C. A. Biochem. Biophys.
Res. Commun. 2010, 394, 141.
19. All final compounds were characterized by 1H NMR, HPLC and HRMS.
Additional synthetic details are provided in: Bell, I. M.; Gallicchio, S. N.;
Zartman, C. B. WO 2005/009962.
20. Lee, J.; Askin, D. Department of Process Research, Merck Research Laboratories,
personal communication.
The pharmacokinetic properties of compound 16 were evalu-
ated in rat and dog. As detailed in Table 4, 16 exhibited moderate