Table 2 Scope of the reaction
Entry
Ylide
Aldehyde
R
Prod.
Solvent
Yielda (%)
endo/exob
eec (%)
1
2
3
4
5
6
7
8
1a
1a
1a
1a
1a
1a
1b
1b
1b
1b
1b
1b
1b
2a
2b
2c
2d
2e
2f
2a
2a
2b
2c
2d
2e
2f
Me
nPr
4a
4b
4c
4d
4e
4f
4g
4g
4h
4i
THF
THF
THF
THF
THF
THF
THF
Toluene
Toluene
Toluene
Toluene
Toluene
Toluene
87
51
45
70
63
73
98
91
72
64
61
63
60
88 : 12
65 : 35
63 : 37
>95 : o5
>95 : o5
>95 : o5
63 : 44
86 : 14
83 : 17
77 : 23
91 : 9
88
84
84
94
88
84
>99
>99
>99
95
nC8H17
Ph
p-(MeO)C6H4
p-(NO2)C6H4
Me
Me
nPr
9
10
11
12
13
nC8H17
Ph
4j
4k
4l
97
90
99
p-(MeO)C6H4
p-(NO2)C6H4
71 : 29
80 : 20
a
b
Yield of pure endo diastereoisomer after flash column chromatography purification. Determined by 1H-NMR analysis of crude reaction
c
mixture. ee of pure endo diastereoisomer determined by HPLC (see ESIz).
2006, 106, 4484; (d) M. Bonin, A. Chauveau and L. Micouin, Synlett,
2006, 2349; (e) C. Najera and J. M. Sansano, Angew. Chem., Int. Ed.,
2005, 44, 6272.
3 (a) P. Merino, E. Marques-Lopez, T. Tejero and R. P. Herrera,
Synthesis, 2010, 1; (b) A. Moyano and R. Rios, Chem. Rev., 2011,
111, 4703.
4 (a) M. Rueping, D. Leonori and T. Poisson, Chem. Commun., 2011,
47, 9615; (b) T. Bohm, A. Weber and J. Sauer, Tetrahedron, 1999,
55, 9535; (c) K. Matsumoto, T. Uchida, K. Aoyama, M. Nishikawa,
Scheme 1 Reduction of cycloadducts 4a–l.
T. Kuroda and T. Okamoto, J. Heterocycl. Chem., 1988, 25, 1793;
(d) O. Tsuge, S. Kanemasa, K. Sakamoto and S. Takenaka, Bull.
All cycloadducts 4a–l were found to be rather unstable com-
Chem. Soc. Jpn., 1988, 61, 2513; (e) M. F. Aly, H. Ardill, R. Grigg,
pounds and, for this reason, these were reduced under standard
S. Leong-Ling, S. Rajviroongit and S. Surendrakumar, Tetrahedron
conditions (Scheme 1), obtaining the corresponding primary
alcohols which could be isolated and correctly characterized. At
this point, we could also grow crystals for compound 4d suitable
for X-ray analysis. This also allowed us to unambiguously
establish the absolute configuration of all compounds 4a–l.
In conclusion we have demonstrated that isoquinolinium
and phthalizinium methylides can be used as efficient azomethine
ylides which participate in (3+2) cycloaddition reaction in
the presence of chiral imidazolidinone 3a as catalyst leading to
the formation of pyrroloisoquinoline and pyrrolophthalazine
cycloadducts in good yields and high diastereo- and enantio-
selectivities under the optimized reaction conditions.
Lett., 1987, 28, 6077; (f) O. Tsuge, S. Kanemasa and S. Takenaka,
J. Org. Chem., 1986, 51, 1853; (g) R. Huisgen and K. Niklas,
Heterocycles, 1984, 22, 21; (h) G. A. Kraus and J. O. Nagy,
Tetrahedron Lett., 1981, 22, 2727; (i) O. Tsuge, H. Shimoharada
and M. Noguchi, Heterocycles, 1981, 15, 807; (j) K. Matsumoto and
T. Uchida, J. Chem. Soc., Perkin Trans. 1, 1981, 73.
5 J. L. Vicario, S. Reboredo, D. Badia and L. Carrillo, Angew.
Chem., Int. Ed., 2007, 46, 5168.
6 (a) G. N. Zbancioc, T. Huhn, U. Groth, C. Delanu and
I. I. Mangalagiu, Tetrahedron, 2010, 66, 4298; (b) E. Kianmehr,
H. Estiri and A. Barheman, J. Heterocycl. Chem., 2009, 46, 1203;
(c) N. Landoni, G. Lesma, A. Sacchetti and A. Silvani, J. Org.
Chem., 2007, 72, 9765; (d) R. M. Butnariu, M. D. Caprosu,
V. Bejan, M. Ungureanu, A. Poiata, C. Tuchilus, M. Florescu
and I. I. Mangalagiu, J. Heterocycl. Chem., 2007, 44, 1149.
7 K. Matsumoto, R. Ohta, T. Uchida, H. Nishioka, M. Yoshida and
A. Kakehi, J. Heterocycl. Chem., 1997, 34, 203.
8 We were able to isolate minor amounts of exo-4a which allowed us
to establish the relative configuration by NMR spectroscopy. We
have not been able to carry out the complete characterization or ee
determination of this minor product.
The authors thank the Spanish MICINN (CTQ2008-00136/
BQU), EJ/GV (Grupos IT328-10) and UPV/EHU (fellowships
to N.F. and E.R.) for financial support.
Notes and references
9 (a) U. Groselj, D. Seebach, D. M. Badine, W. B. Schweizer,
A. K. Beck, I. Krossing, P. Klose, Y. Hayashi and T. Uchimaru,
Helv. Chim. Acta, 2009, 92, 1225; (b) M. Nielsen, D. Worgull,
T. Zweifel, B. Gschwend, S. Bertelsen and K. A. Jørgensen, Chem.
Commun., 2011, 47, 611.
1 For selected recent general reviews on (3+2) cycloadditions see:
(a) M. Kissane and A. R. Maguire, Chem. Soc. Rev., 2010, 39, 845;
(b) C. Najera, J. M. Sansano and M. Yus, J. Braz. Chem. Soc.,
2010, 21, 377; (c) B. Engels and M. Christl, Angew. Chem., Int. Ed.,
2009, 48, 7968; (d) U. Chiacchio, A. Padwa and G. Romeo, Curr.
Org. Chem., 2009, 13, 422; (e) L. M. Stanley and M. P. Sibi, Chem.
Rev., 2008, 108, 2887.
10 W. S. Jen, J. J. M. Wiener and D. W. C. MacMillan, J. Am. Chem.
Soc., 2000, 122, 9874.
11 (a) R. N. Butler, A. G. Coyne, P. McArdle, D. Cunningham and
L. A. Burke, J. Chem. Soc., Perkin Trans. 1, 2001, 1391;
(b) R. N. Butler, A. G. Coyne and L. A. Burke, J. Chem. Soc.,
Perkin Trans. 2, 2001, 1784.
2 Some reviews on asymmetric (3+2) cycloadditions with azomethine
ylides: (a) J. Adrio and J. C. Carretero, Chem. Commun., 2011,
47, 6784; (b) P. Garner and H. U. Kaniskan, Curr. Org. Synth.,
2010, 7, 348; (c) G. Pandey, P. Banerjee and S. R. Gadre, Chem. Rev.,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12313–12315 12315