6464
C. Gargiulli et al. / Tetrahedron Letters 52 (2011) 6460–6464
13. Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. J. Am.
Chem. Soc. 1995, 117, 586–601.
integration of the relevant peaks showed a trend consistent with a
decrease in the average degree of polymerization, similar to that ob-
served in the ‘capping’ experiment (Fig. 4b). Similarly, beyond the
14. (a) Arnaud-Neu, F.; Fuangswasdi, S.; Notti, A.; Pappalardo, S.; Parisi, M. F.
Angew. Chem., Int. Ed. 1998, 37, 112–114; (b) Cafeo, G.; Gattuso, G.; Kohnke, F.
H.; Notti, A.; Occhipinti, S.; Pappalardo, S.; Parisi, M. F. Angew. Chem., Int. Ed.
2002, 41, 2122–2126; (c) Gattuso, G.; Notti, A.; Pappalardo, S.; Parisi, M. F.;
Pilati, T.; Resnati, G.; Terraneo, G.; Pilati, T. CrystEngComm 2009, 11, 1204–
1206.
15. (a) Garozzo, D.; Gattuso, G.; Kohnke, F. H.; Notti, A.; Pappalardo, S.; Parisi, M. F.;
Pisagatti, I.; White, A. J. P.; Williams, D. J. Org. Lett. 2003, 5, 4025–4028; (b)
Gattuso, G.; Notti, A.; Pappalardo, A.; Parisi, M. F.; Pisagatti, I.; Pappalardo, S.;
Garozzo, D.; Messina, A.; Cohen, Y.; Slovak, S. J. Org. Chem. 2008, 73, 7280–
7289.
point of equivalence the cavities of the monomers are almost fully
+
‘plugged’ with n-BuNH3 chain stoppers (i.e., Xn ¼ 2).30
ꢀ
In conclusion, new calix[5]arene-based supramolecular poly-
mers—that is, (1ꢂHCl)n, (1ꢂHPic)n, and (1ꢂHPF6)n—have been synthe-
sized, and their concentration- and counterion-dependence have
been investigated. In addition, we have demonstrated that the
chain-length control of these AB-type supramolecular polymers
can be efficiently achieved by independently acting on both termi-
nals of the monomeric unit. Addition of either a competitive recep-
tor—a polymerization-inert calix[5]arene—or a competitive guest—
a polymerization-inert linear alkylammonium ion—resulted in a
progressive decrease in the number-average degree of polymeriza-
tion, opening the way for greater control over the macroscopic prop-
erties of these novel materials. Further studies aimed at the
elucidation of the behavior of the chain stoppers at higher concen-
tration ranges are currently in progress.
16. Garozzo, D.; Gattuso, G.; Kohnke, F. H.; Malvagna, P.; Notti, A.; Occhipinti, S.;
Pappalardo, S.; Parisi, M. F.; Pisagatti, I. Tetrahedron Lett. 2002, 43, 7663–7667.
17. 31-[12-N-(Phthalimidododecyl)oxy]-32,33,34,35-tetra-hexadecyloxy)-
5,11,17,23,29-penta-tert-butylcalix[5]arene 3: Calix[5]arene
2
(200 mg,
0.18 mmol), 1-bromohexadecane (652 mg, 2.14 mmol) and K2CO3 (295 mg,
2.14 mmol) were suspended in anhydrous CH3CN (25 mL) and refluxed for
16 h, under vigorous stirring. Inorganic salts were filtered off and washed with
CHCl3. The combined filtrates were evaporated to dryness under reduced
pressure, and the residue was purified by column chromatography (SiO2,
petroleum ether-Et2O 8:1) to give 3 (225 mg, 62%) as a white powder. Mp 71–
73 °C; 1H NMR (300 MHz, CDCl3) d 0.90 (t, J = 7.0 Hz, CH2CH3, 12 H), 1.04, 1.05
and 1.08 (3 ꢁ s, ratio 1:2:2, C(CH3), 45 H), 1.20–1.55 (m, CH2, 122 H), 1.69 (bq,
J = 7.0 Hz, CH2,
2 H), 1.91 (bq, J = 7.0 Hz, CH2, 8 H), 3.26 and 4.56 (AX,
J = 14.0 Hz, ArCH2Ar, 10 H), 3.60–3.70 (m, NCH2 and OCH2, 12 H), 6.92, 6.94 and
6.97 (3 ꢁ s, ratio 1:2:2, Ar, 10 H), 7.69–7.72 and 7.84–7.87 (2 ꢁ m, Pht, 4 H)
ppm; 13C NMR (75 MHz, CDCl3), d 14.1, 22.7, 26.4, 27, 0, 28.7, 29.3, 29.4, 29.7,
29.8, 29.9, 30.0, 30.1, 30.2, 30.3, 30.6, 31.4, 31.9, 33.9, 38.0, 74.0, 123.1, 125.3,
125.4, 132.2, 133.8, 133.9, 144.4, 152.8, 168.4 ppm. ESI MS m/z (rel. int. %)
2045.5 ([M+Na]+, 100), and 2061.6 ([M+K]+, 78). Anal. Calcd for C139H225NO7: C,
82.55; H, 11.21; N, 0.69. Found: C, 82.31; H, 11.33; N, 0.68.
Acknowledgment
We are indebted to Dr. G. Grasso (CNR IBB, Catania, Italy) for the
acquisition of ESI MS spectra. MIUR (PRIN-2009A5Y3N9 project) is
gratefully acknowledged for financial support.
18. 31-[(12-Aminododecyl)oxy]-32,33,34,35-tetra-hexadecyloxy-5,11,
penta-tert-butylcalix[5]arene 1: A stirred mixture of calix[5]arene 3 (202 mg,
0.10 mmol) and hydrazine monohydrate (49 L, 1.0 mmol) in EtOH (20 mL)
17,23,29-
References and notes
l
was refluxed for 3 h. The solvent was evaporated under reduced pressure. The
residue was dissolved in CHCl3, washed with aqueous NaOH (5% w/w), dried
(Na2SO4), and the solution was evaporated to dryness. Precipitation of the
residue from CHCl3/MeOH afforded 1 (81 mg, 43%). Mp 78–80 °C; 1H NMR
(300 MHz, CDCl3) d 0.88 (t, J = 6.7 Hz, CH2CH3, 12 H), 1.02, 1.03 and 1.05 (3 ꢁ s,
ratio 1:2:2, C(CH3), 45 H), 1.20–1.60 (m, CH2, 122 H), 1.80–2.00 (m, CH2, 10 H),
2.67 (t, J = 6.8 Hz, CH2NH2, 2 H), 3.24 and 4.54 (AX, J = 14.1 Hz, ArCH2Ar, 10 H),
3.60–3.70 (m, OCH2, 10 H), 6.91, 6.92 and 6.93 (3 ꢁ s, ratio 1:2:2, Ar, 10 H)
ppm; 13C NMR (75 MHz, CDCl3), d 14.1, 22.7, 26.4, 27.0, 29.3, 29.4, 29.7, 29.8,
29.9, 30.0, 30.1, 30.2, 30.6, 31.4, 32.0, 33.9, 42.3, 74.1, 125.3, 125.4, 133.9,
144.4, 152.8 ppm. ESI MS m/z (rel. int. %) 1893.3 ([M+H]+, 100), and 1915.7
([M+Na]+, 3). Anal. Calcd for C131H223NO5: C, 83.15; H, 11.88; N, 0.74 Found: C,
82.87; H, 11.99; N, 0.69.
1. (a) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001,
101, 4071–4098; (b) Lehn, J.-M. Polym. Int. 2002, 51, 825–839; (c)
Supramolecular Polymers; Ciferri, A., Ed., 2nd ed.; CRC Press: Boca Raton, FL,
2005.
2. De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma,
R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687–5754.
3. Keizer, H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226–234.
4. For representative examples, see: (a) Ashton, P. R.; Parsons, I. W.; Raymo, F. M.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J.; Wolf, R. Angew. Chem., Int. Ed. 1998,
37, 1913–19016; (b) Yamaguchi, N.; Nagvekar, D. S.; Gibson, H. W. Angew.
Chem., Int. Ed. 1998, 37, 2361–2364; (c) Harada, A.; Takashima, Y.; Yamaguchi,
H. Chem. Soc. Rev. 2009, 38, 875–882; (d) Tancini, F.; Yebeutchou, R. M.;
Pirondini, L.; De Zorzi, R.; Geremia, S.; Scherman, O. A.; Dalcanale, E. Chem. Eur.
J. 2010, 16, 14313–14321; (e) Zhang, Z.; Luo, Y.; Chen, J.; Dong, S.; Yu, Y.; Ma, Z.;
Huang, F. Angew. Chem., Int. Ed. 2011, 50, 1397–1401; (f) Capici, C.; Cohen, Y.;
D’Urso, A.; Gattuso, G.; Notti, A.; Pappalardo, A.; Pappalardo, S.; Parisi, M. F.;
Purrello, R.; Slovak, S.; Villari, V. Angew. Chem. Int. Ed. 2011. doi:10.1002/
5. (a) Mita, I.; Stepto, R. F. T.; Suter, U. W. Pure Appl. Chem. 1994, 66, 2483–2486;
(b) Elias, H.-G. An Introduction to Polymer Science; VCH: Weinheim, Germany,
1997.
6. Michelsen, U.; Hunter, C. A. Angew. Chem., Int. Ed. 2000, 39, 764–767.
7. (a) Ferguson, S. B.; Seward, E. M.; Sanford, E. M.; Hester, M.; Uyeki, M.;
Diederich, F. Pure Appl. Chem. 1989, 61, 1523–1528; (b) Rüdiger, V.; Schneider,
H.-J.; Solov’ev, V. P.; Kazachenko, V. P.; Raevsky, O. A. Eur. J. Org. Chem. 1999,
1847–1856.
19. The isochronous nature of these signals likely reflects the similar size of the
hexadecyloxy and aminododecyloxy substituents present at the lower rim.
20. A solution of the amino precursor 1 (30 mg in 5 mL of HCl-free CHCl3 was
treated with 5 mL of the pertinent acid solution (1 M HCl/H2O for 1ꢂHCl, 1%
picric acid in H2O for 1ꢂHPic and 1 M HPF6/H2O for 1ꢂHPF6). The organic layer
was separated, washed with H2O (3 ꢁ 5 mL), dried (MgSO4), and concentrated
to dryness under reduced pressure. The solid residue obtained was kept under
vacuum (2 h, rt) and each sample used as such to prepare the relevant stock
solutions. HCl-free CDCl3 was obtained by percolation through neutral alumina
prior to use.
21. Assignments derive from H-H COSY spectra (not shown).
22. Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12, 2092–2095.
23. For supramolecular polymers, the average degree of polymerization can be
ꢀ
determined by applying Carother’s equation [Xn = 1/(1–p)], where the ‘extent
8. Pappalardo, S.; Villari, V.; Slovak, S.; Cohen, Y.; Gattuso, G.; Notti, A.;
Pappalardo, A.; Pisagatti, I.; Parisi, M. F. Chem. Eur. J. 2007, 13, 8164–8173.
9. (a) Hirschberg, J. H. K. K.; Ramzi, A.; Sijbesma, R. P.; Meijer, E. W.
Macromolecules 2003, 36, 1429–1432; (b) Dudek, S. P.; Pouderoijen, M.;
Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127,
11763–11768; (c) Knoben, W.; Besseling, N. A. M.; Boutellier, L.; Cohen Stuart,
M. A. Phys. Chem. Chem. Phys. 2005, 7, 2390–2398; (d) Lortie, F.; Boileau, S.;
Boutellier, L.; Chassenieux, C.; Lauprêtre, F. Macromolecules 2005, 38, 5283–
5287; (e) Knoben, W.; Besseling, N. A. M.; Cohen Stuart, M. A. Macromolecules
2006, 39, 2643–2653; (f) Pinault, T.; Cannizzo, C.; Andrioletti, B.; Ducouret, G.;
Lequeux, F.; Boutellier, L. Langmuir 2009, 25, 8404–8407.
of reaction’ p can be obtained by direct integration of the peaks belonging to
the free end-groups and to the self-assembled core moieties. See Ref. 8 for a
more extensive discussion.
24. Martin, R. B. Chem. Rev. 1996, 96, 3043–3064.
25. Gattuso, G.; Notti, A.; Parisi, M. F.; Pisagatti, I.; Amato, M. E.; Pappalardo, A.;
Pappalardo, S. Chem. Eur. J. 2010, 16, 2381–2385.
26. Carrying out these experiments in relatively diluted conditions allowed 1H
NMR monitoring of the decrease in the average degree of polymerization.
27. Barrett, G.; McKervey, M. A.; Malone, J. F.; Walker, A.; Arnaud-Neu, F.; Guerra,
L.; Schwing-Weill, M.-J. J. Chem. Soc., Perkin Trans. 2 1993, 1475–1479.
28. Owing to the fact that the higher-field peak firstly grows in intensity and then
disappears, in favor of the lower-field one, these two peaks have been
tentatively assigned to the pentaester-included ammonium moieties of the
1ꢂH+ꢄ4 complex and the differently-sized (1ꢂH+)mꢄ4 (m >1) assemblies,
respectively.
10. Gutsche, C. D. Calixarenes
– An Introduction, 2nd ed. In Monographs in
Chemistry, Vol. 6, Stoddart, J. F. Ed.; The Royal Society of Chemistry: Cambridge,
2008.
11. (a) Castellano, R. K.; Nuckolls, C.; Eichhorn, S. H.; Wood, M. R.; Lovinger, A. J.;
Rebek, J., Jr. Angew. Chem., Int. Ed. 1999, 38, 2603–2606; (b) Xu, H.; Rudkevich,
D. M. Chem. Eur. J. 2004, 10, 5432–5442; (c) Podoprygorina, G.; Janke, M.;
Janshoff, A.; Böhmer, V. Supramol. Chem. 2008, 20, 59–69.
12. (a) Haino, T.; Matsumoto, Y.; Fukazawa, Y. J. Am. Chem. Soc. 2005, 127, 8936–
8937; (b) Ishihara, S.; Takeoka, S. Tetrahedron Lett. 2006, 47, 181–184; (c)
Haino, T.; Hirai, E.; Fujiwara, Y.; Kashihara, K. Angew. Chem., Int. Ed. 2010, 49,
7899–7903; (d) Guo, D.-S.; Chen, S.; Qian, H.; Zhang, H.-Q.; Liu, Y. Chem.
Commun. 2010, 2620–2622.
ꢀ
29. As far as the Xn determination is concerned, chain stoppers are considered
ꢀ
equivalent to monomers, so that a Xn ¼ 2 represents the complete capture of
the monomers by the relevant chain stoppers, with the exclusive formation of
1:1 1ꢂH+ꢄ4 complexes in this case.
30. It should be mentioned that, due to the poor solubility of n-BuNHþ3 PF6ꢃ, the last
two spectra of the titration (i.e., 20 mM, 1:2; 50 mM, 1:5) were recorded in the
ꢀ
presence of some undissolved salt. However, this had no influence on the Xn
calculations.