6136
N. Wanichacheva et al. / Tetrahedron Letters 52 (2011) 6133–6136
References and notes
1. (a) Renzoni, A.; Zino, F.; Franchi, E. Environ. Res. 1998, 77, 68; (b) Hardy, S.;
Jones, P. J. Chromatogr. 1997, 791, 333; (c) Harris, H. H.; Pickering, I. J.; George,
G. N. Science 2003, 301, 1203.
2. (a) Gutknecht, J. J. Membrane Biol. 1981, 61, 61; (b) Tchounwou, P. B.; Ayensu,
W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.
3. (a) Shiraishi, Y.; Sumiya, S.; Kohno, Y.; Hirai, T. J. Org. Chem. 2008, 73, 8571; (b)
McMahon, B. K.; Gunnlaugsson, T. Tetrahedron Lett. 2010, 51, 5406.
4. (a) Zhang, H.; Han, L.-F.; Zachariasse, K. A.; Jiang, Y.-B. Org. Lett. 2005, 7, 4217;
(b) Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J. Org. Chem. 2004, 69, 181.
5. Martinez, R.; Espinosa, A.; Tarraga, A.; Molina, P. Org. Lett. 2005, 7, 5869.
6. (a) Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8, 371; (b) Park,
S. M.; Kim, M. H.; Choe, J. I.; No, K. T.; Chang, S.-K. J. Org. Chem. 2007, 72, 3550;
(c) Youn, N. J.; Chang, S.-K. Tetrahedron Lett. 2005, 46, 125; (d) Song, K.-C.; Kim,
M. H.; Kim, H. J.; Chang, S.-K. Tetrahedron Lett. 2007, 48, 7464.
7. Kim, S. H.; Song, K. C.; Ahn, S.; Kang, Y. S.; Chang, S.-K. Tetrahedron Lett. 2006,
47, 497.
8. (a) Metivier, R.; Leray, I.; Valeur, B. Chem. Eur. J. 2004, 10, 4480; (b) Lee, Y. H.;
Lee, M. H.; Zhang, J. F.; Kim, J. S. J. Org. Chem. 2010, 75, 7159; (c) Chen, Q.-Y.;
Chen, C.-F. Tetrahedron Lett. 2005, 46, 165.
9. (a) Soh, J. H.; Swamy, K. M. K.; Kim, S. K.; Kim, S.; Lee, S.-H.; Yoon, J. Tetrahedron
Lett. 2007, 48, 5966; (b) Ma, T.-H.; Zhang, A.-J.; Dong, M.; Dong, Y.-M.; Peng, Y.;
Wang, Y.-W. J. Lumin. 2010, 130, 888; (c) Rurack, K.; Kollmannsberger, M.;
Resch-Genger, U.; Daub, J. J. Am. Chem. Soc. 2000, 122, 968; (d) Kadarkaraisamy,
M.; Sykes, A. G. Polyhedron 2007, 26, 1323.
Figure 5. Competition experiments in the 4-Hg2+ system with common foreign
metal ions: [4] = 0.12
l
M, [Hg2+] = 0.17
l
M, and [Mn+] = 1.7
lM
in 90:10
CH3CN:H2O solution (kex = 336 nm).
10. (a) Tan, J.; Yan, X.-P. Talanta 2008, 76, 9; (b) Chen, Y.-B.; Wang, Y.-J.; Lin, Y.-J.;
Hu, C.-H.; Chen, S.-J.; Chir, J.-L.; Wu, A.-T. Carbohydr. Res. 2010, 345, 956.
11. (a) Fabbrizzi, L.; Francese, G.; Licchelli, M.; Perotti, A.; Taglietti, A. Chem.
Commun. 1997, 581; (b) Tobey, S. L.; Anslyn, E. V. J. Am. Chem. Soc. 2003, 125,
14807; (c) Tobey, S. L.; Jones, B. D.; Anslyn, E. V. J. Am. Chem. Soc. 2003, 125,
4026; (d) Lee, M. H.; Wu, J.-S.; Lee, J. W.; Jung, J. H.; Kim, J. S. Org. Lett. 2007, 9,
2501.
12. (a) Wanichacheva, N.; Siriprumpoonthum, M.; Kamkaew, A.; Grudpan, K.
Tetrahedron Lett. 2009, 50, 1783; (b) Wanichacheva, N.; Watpathomsub, S.;
Vannajan, S. L.; Grudpan, K. Molecules 2010, 15, 1798; (c) Wanichacheva, N.;
Kamkaew, A.; Watpathomsub, S.; Vannajan, S. L.; Grudpan, K. Chem. Lett. 2010,
39, 1099.
13. (a) Parola, A. J.; Lima, J. C.; Pina, F.; Pina, J.; Melo, J. S. D.; Soriano, C.; García-
España, E.; Aucejo, R.; Alarcón, J. Inorg. Chim. Acta 2007, 360, 1200; (b) Lim, M.
H.; Lippard, S. J. Inorg. Chem. 2006, 45, 8980; (c) Chen, C.-F.; Chen, Q.-Y.
Tetrahedron Lett. 2004, 45, 3957; (d) Métivier, R.; Leray, I.; Valeur, B. Chem. Eur.
J. 2004, 10, 4480; (e) Sulowska, H.; Wiczk, W.; Mlodzianowski, J.;
Przyborowska, M.; Ossowski, T. J. Photochem. Photobiol. A 2002, 150, 249.
14. Synthesis of tris[2-(2-aminoethylthio)ethyl]amine (3): In a round bottom flask,
NaOMe (0.270 g, 5 mmol) and cysteamine hydrochloride (1) (0.424 g,
3.74 mmol) were dissolved in dry MeOH (3 mL) under an argon atmosphere
and the mixture was stirred for 30 min. This solution was added to tris(2-
chloroethyl)amine hydrochloride (2) (0.200 g, 0.83 mmol) and the mixture was
refluxed for 18 h under an argon atmosphere. The resulting insoluble
precipitate was removed by filtration. The solvent was removed on a rotary
evaporator. Aqueous NaOH solution (30% w/v, 10 mL) was added to the residue
and the resulting solution stirred slowly overnight. The mixture was extracted
with CH2Cl2 (3 Â 20 mL). The organic phase was collected and washed with
distilled H2O (30 mL) and then dried over anhydrous Na2SO4. The solvent was
removed under vacuum to give the product as a yellow oil which was used
without further purification. 1H NMR (300 MHz, CDCl3) d 2.06 (s, 6H), 2.57–
2.79 (m, 18H), 2.87 (t, J = 6.3, 6H). 13C NMR (75 MHz, CDCl3) d 28.9 (3CH2), 35.6
(3CH2), 40.3 (3CH2), 52.0 (3CH2). HRMS calcd for C12H31N4S3 (M+H)+ 327.1705,
found 327.1637.
The bars represent the final fluorescence emission response (IF)
over the initial fluorescence emission response (I0) at 516 nm. IF val-
ues are the fluorescence responses of 4 in the presence of represen-
tative competitive background cations. IF/I0 (where IF is the
fluorescence emission intensity of 4 in the presence of Hg2+ only)
was used as a reference and is equal to 0.77. The IF/I0 values were
found to lie between 0.75–0.80, which indicated that a relatively
consistent Hg2+-induced fluorescence quenching was observed in
background competing ions. In addition, only small variations in
the fluorescence intensity were found by comparison with and with-
out other competitive ions besides Hg2+. It is clear that 4 can be
utilized as an Hg2+-selective fluorescence sensor providing sensitiv-
ity for Hg2+ even in the presence of 10 equiv of background Cu2+
,
Pb2+, and Ag+ in which are known to be important competitors.
The observed selectivity of 4 for Hg2+ is notable compared to many
multidentate sulfide-containing ligands, cyclam, cyclen, and tren
moieties in previous reports.4–9
In conclusion, we have successfully prepared a new tripodal sul-
fur-rich ligand, tris[2-(2-aminoethylthio)ethyl]amine, connected to
three dansyl fluorophores and utilized it as a sensitive fluorescence
chemosensor, which shows high selectivity toward Hg2+ in the pres-
ence of various background competitive cations in aqueous–organic
solutions. The readily accessible synthetic sensor presented here is
advantageousin terms of synthetic simplicity, its low detection limit
for Hg2+ and its high selectivity in the presence of potential compet-
itors such as Cu2+, Pb2+, and Ag+. The molecular design presented
here could serve as a new potential platform for commercial uses
and future developments for sensor systems.
15. Synthesis of 4: In a round bottom flask, tris[2-(2-aminoethylthio)ethyl] amine
(3) (0.100 g, 0.31 mmol) and K2CO3 (0.170 g, 1.22 mmol) were stirred in dry
THF for 30 min under an argon atmosphere. Dansyl chloride (0.331 g,
1.23 mmol) was added and the mixture was stirred overnight at room
temperature. The resulting insoluble precipitate was removed by filtration.
The solvent was removed under vacuum. The crude product was purified by
preparative thin layer chromatography, run in the dark (5% MeOH in CH2Cl2) to
yield 24 mg of a yellow oil, yield 8%). 1H NMR (300 MHz, CDCl3) d 1.66 (s, 3H),
2.43 (t, J = 6.6, 6H), 2.51–2.68 (m, 12H), 2.90 (s, 18H), 3.04–3.10 (m, 6H), 7.19
(d, J = 7.5, 3H), 7.50–7.59 (m, 6H), 8.24–8.32 (m, 6H), 8.55 (d, J = 8.4, 3H), 13C
NMR (300 MHz, CDCl3) d 31.4 (3CH2), 41.3 (3CH2), 44.4 (6CH3), 52.2 (3CH2),
54.1 (3CH2), 114.2 (3CH), 114.3 (3C), 117.8 (3CH), 122.2 (3CH), 127.5 (3CH),
128.5 (3CH), 128.5 (3C), 128.9 (3C), 129.5 (3CH), 151.0 (3CH), HRMS calcd for
Acknowledgments
This work was supported by the Grant MRG 5380093 from the
Thailand Research Fund, the Center for Innovation in Chemistry
(PERCH-CIC), and National Research University Project under Thai-
land’s Office of the Higher Education Commission. The authors
would like to express their gratitude to the Computational Nano-
science Consortium (CNC), Nanotechnology (NANOTEC), Thailand
for access to the Discovery Studio 2.5 program package.
C
48H64N7O6S6 (M+H)+ 1026.3237, found 1026.2985.
16. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; John Wiley and Sons: New
York, 2000.
17. Shortreed, M.; Kopelman, R.; Kuhn, M.; Hoyland, B. Anal. Chem. 1996, 68, 1414.
18. Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127,
16030.
19. Crosby, G. A.; Demas, J. N. J. Phys. Chem. 1971, 75, 991.
20. (a) Valeur, B.; Pouget, J.; Bourson, J.; Kaschke, M.; Ernsting, N. P. J. Phys. Chem.
1992, 96, 6545; (b) Bourson, J.; Pouget, J.; Valeur, B. J. Phys. Chem. 1993, 97,
4552.
Supplementary data
Supplementary data associated with this article can be found, in
21. Bakker, E.; Buhlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083.