Et3N (100 mL) was added. The suspension was sonicated until
Acknowledgements
the mixture became homogenous. The reaction mixture was
5
◦C (direct flask temperature
We thank Pembroke College, Cambridge, and the University of
Bath (GDP) and EPSRC for financial support.
heated for 5 min at 140
measurement) under microwave irradiation using a dedicated
microwave system. The solvent was removed under reduced
pressure and the reaction mixture was worked-up by being re-
dissolved in EtOH (~5–10 mL) and poured into constantly stirred
acidified water (5 mL 37% aqueous HCl in 500 mL water).
This was allowed to stir at room temperature for a further
16 h, then filtered under suction. The product was collected as
a yellow solid. The product was thoroughly dried under reduced
pressure.
Notes and references
1 P. Pengo, G. D. Pantos¸, S. Otto and J. K. M. Sanders, J. Org. Chem.,
2006, 71, 7063.
2 G. D. Pantos¸, P. Pengo and J. K. M. Sanders, Angew. Chem., Int. Ed.,
2007, 46, 194.
3 M. M. Green, B. A. Garetz, B. Munoz, H. P. Chang, S. Hoke and R.
G. Cooks, J. Am. Chem. Soc., 1995, 117, 4181.
4 J. van Gestel, A. R. A. Palmans, B. Titulaer, J. A. J. M. Vekemans and
E. W. Meijer, J. Am. Chem. Soc., 2005, 127, 5490.
5 J. van Gestel, Macromolecules, 2004, 37, 3894.
6 M. M. J. Smulders, P. J. M. Stals, T. Mes, T. F. Paffen, A. P. H. J.
Schenning, A. R. A. Palmans and E. W. Meijer, J. Am. Chem. Soc.,
2010, 132, 620.
Characterisation data
L-6 ((R)-1-(7-(1-carboxy-2-(tritylthio)ethyl)-1,3,6,8-tetraoxo-7,8-
dihydrobenzo[lmn][3,8]phenanthrolin - 2 ( 1H , 3H , 6H) - yl)cyclo-
propanecarboxylic acid): Yiel◦d was 81% and further purification
7 A. R. A. Palmans and E. W. Meijer, Angew. Chem., Int. Ed., 2007, 46,
8948.
8 E. Yashima, K. Maeda, H. Iida, Y. Furusho and K. Nagai, Chem. Rev.,
2009, 109, 6102.
1
was not required. mp >300 C; H NMR (400 MHz, DMSO-
d6) d (ppm): 12.16 (bs, 1H) 12.93 (bs, 1H), 8.72 (s, 4H), 7.20 (m,
15H), 5.55 (dd, J1 = 10.52, J2 = 4.6, 1H), 3.12 (dd, J1 = 12.76,
J2 = 4.8, 1H), 2.92 (dd, J1 = 12.76, J2 = 10.52, 1H), 1.81 (dd, J1 =
9.8, J2 = 4.4, 2H), 1.45 (dd, J1 = 9.8, J2 = 4.4, 2H); 13C NMR
(1H) (125 MHz, TCE-d4) d (ppm): 172.15, 169.18, 162.82, 161.95,
143.12, 129.03, 128.88, 128.07, 127.94, 126.97, 126.48, 126.21,
125.16, 66.47, 52.18, 34.82, 30.25, 18.38; HRMS (ESI+) calcd for:
C40H28N2O8S [M+H]+ (m/z): 697.1639 found: 697.1582. Elemental
analysis for 4 C40H28N2O8S·1 H2O: calcd C, 68.51%; H, 4.10%; N,
3.99%; S, 4.57%; found: C, 68.53%; H, 4.11%; N, 4.00%; S, 4.58%.
L-7 (R)-1-(7-(1-carboxy-2-(tritylthio)ethyl)-1,3,6,8-tetraoxo-7,
8-dihydrobenzo[lmn][3,8]phenanthrolin-2(1H,3H,6H)-yl)cyclo-
butanecarboxylic acid): Yield◦was 73% and further purification
9 T. W. Anderson, J. K. M. Sanders and G. D. Pantos¸, Org. Biomol.
Chem., 2010, 8, 4274.
10 M. M. Green, M. P. Reidy, R. J. Johnson, G. Darling, D. J. Oleary and
G. Willson, J. Am. Chem. Soc., 1989, 111, 6452.
11 M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook and S.
Lifson, Science, 1995, 268, 1860.
12 C. Carlini, F. Ciardelli and P. Pino, Makromol. Chem., 1968, 119,
244.
13 A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga and E. W.
Meijer, Angew. Chem., Int. Ed. Engl., 1997, 36, 2648.
14 L. Brunsveld, B. G. G. Lohmeijer, J. A. J. M. Vekemans and E. W.
Meijer, Chem. Commun., 2000, 2305.
15 R. B. Prince, L. Brunsveld, E. W. Meijer and J. S. Moore, Angew. Chem.,
Int. Ed., 2000, 39, 228.
16 R. B. Prince, J. S. Moore, L. Brunsveld and E. W. Meijer, Chem.–Eur.
J., 2001, 7, 4150.
17 M. M. J. Smulders, A. P. H. J. Schenning and E. W. Meijer, J. Am.
Chem. Soc., 2008, 130, 606.
1
was not required. mp >300 C; H NMR (400 MHz, CDCl3)
d (ppm): 8.60 (s, 2H), 8.56 (s, 2H), 7.23 (m, 15H), 5.52 (dd,
J1 = 4.6, J2 = 5.2, 1H), 3.18 (dd, J1 = 12.1, J2 = 5.2), 3.10 (dd,
J1 = 12.1, J2 = 4.6, 1H), 2.69 (dd, J1 = 12.4, J2 = 8.9, 2H), 2.60
(dd, J1 = 11.2, J2 = 12.4, 2H), 2.45 (dd, J1 = 9.6, J2 = 8.9), 1.91
(dd, J1 = 11.2, J2 = 9.6); 13C NMR (1H) (125 MHz, TCE-d4)
d (ppm): 161.75, 161.51, 146.59, 130.75, 129.43, 128.28, 127.91,
126.79, 67.52, 62.99, 52.28, 36.46, 30.00, 16.78; HRMS (ESI+)
calcd for: C41H30N2O8S [M+H]+ (m/z): 711.1796 found: 711.1783.
Elemental analysis for 6 C41H30N2O8S·1 H2O: calcd C, 68.99%; H,
4.28%; N, 3.92%; S, 4.49%, found C, 68.97%; H, 4.29%; N, 3.91%;
S, 4.50%.
18 S. J. George, Z. Tomovic, M. M. J. Smulders, T. F. A. de Greef, P. E. L.
G. Leclere, E. W. Meijer and A. P. H. J. Schenning, Angew. Chem., Int.
Ed., 2007, 46, 8206.
19 L. J. Prins, P. Timmerman and D. N. Reinhoudt, J. Am. Chem. Soc.,
2001, 123, 10153.
20 G. D. Pantos¸, J. L. Wietor and J. K. M. Sanders, Angew. Chem., Int.
Ed., 2007, 46, 2238.
21 E. Tamanini, G. D. Pantos¸ and J. K. M. Sanders, Chem.–Eur. J., 2010,
16, 81.
22 J. L. Wietor, G. D. Pantos¸ and J. K. M. Sanders, Angew. Chem., Int.
Ed., 2008, 47, 2689.
23 T. W. Anderson, PhD thesis, University of Cambridge,
2011.
24 K. Tambara, N. Ponnuswamy, G. Hennrich and G. D. Pantos¸, J. Org.
L-8 ((R)-2-(7-(carboxymethyl)-1,3,6,8-tetraoxo-7,8-dihydro-
benzo[lmn][3,8]phenanthrolin-2(1H ,3H ,6H)-yl)-3-(tritylthio)-
propanoic acid): Yield was 67% and required further purification:
the product was recrystallised in hot chloroform/methanol (7 : 3
ratio) with the less soluble NDA starting material being removed
Chem., 2011, 76, 3338.
25 B. M. Bulheller, G. D. Pantos¸, J. K. M. Sanders and J. D. Hirst, Phys.
Chem. Chem. Phys., 2009, 11, 6060.
26 p–p interactions, which may lead to chiral aggregates that could
have a similar set of naphthyl proton resonances, are unlikely to
play a role in the self-assembly of the NDIs in chloroform, as
the association constant between two molecules in this solvent
is <1 M-1 (M. S. Cubberley and B. L. Iverson, J. Am. Chem. Soc.,
2001, 123, 7560).
27 The nanotubes made up of monochiral L-6 must cope with a constant
‘mismatch penalty’ from the fact that their components have both chiral
and achiral centre-based carboxylic acid ends, which will slow their
hydrogen-bonded assembly. The slower disassembly of L-6 nanotubes
may be due to the less sterically demanding packing of the smaller
sidechains in L-6 compared to L-1.
◦
1
via hot filtration. mp >300 C; H NMR (400 MHz, TCE-d4) d
(ppm): 8.76 (d, J = 7.6, 2H), 8.70 (d, J = 7.6, 2H), 7.25 (m, 15H),
5.00 (dd, J1 = 10.2, J2 = 5.1), 3.28 (dd, J1 = 6.8, J2 = 5.1, 1H),
3.15 (dd, J1 = 10.2, J2 = 6.8, 1H), 2.9 (d, J = 28.1, 2H); 13C NMR
(1H) (125 MHz, TCE-d4) d (ppm): 161.94, 161.48, 143.88, 129.33,
128.28, 127.88, 127.19, 126.77, 126.21, 67.47, 56.71, 52.40, 29.62;
HRMS (ESI+) calcd for: C38H26N2O8S [M+H]+ (m/z): 671.1488
found: 671.1479. Elemental analysis for 4 C38H26N2O8S·1 H2O:
calcd C, 67.60%; H, 3.96%; N, 4.15%; S, 4.75%; found C, 67.59%;
H, 3.97%; N, 4.15%; S, 4.74%.
28 A similar hydrogen pattern has been previously observed in alanine
phthalimide tapes: J. Li and Z.-P. Liang, Acta Crystallogr. Sect. E,
2006, 62, o4915.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 7547–7553 | 7553
©