upon increasing the average distance between the nanoparticles
within the composite independently from the nature of the
coating agent. Indeed, diluting the NPs in the organic polymer
polyvinylpyrrolidone (PVP) leads to a magnetic behaviour
very close to that of 3 (Fig. S11, ESIw).
The main result that highlights the role of the matrix is the
presence of a large hysteresis of 15 K for 2 where the particles
are coated with a thin silica shell, while only a very small
aperture of 2 K occurs for 1 (the calix-covered particles) and
no hysteresis is observed for the diluted composites whether in
silica or in PVP. This is consistent with results reported on
particles of related 2D networks embedded in PVP.7
electron–phonon couplings within the crystal network. These
experimental results thus open new perspectives in the area of
spin crossover nanomaterials where cooperativity can be
triggered and/or tuned by changing, for instance, the mechanical
properties of the media surrounding the nano-objects.
The authors gratefully acknowledge for their financial support
from the Higher Education Commission of Pakistan, the
French Ministry of Research (ANR grant contract number
JCJC N1 ANR-08-JCJC-0085-01) and the METSA network.
We thank the Centre Commun de Microscopie Electronique
d’Orsay for the instrumentation and Dr Gabor Molnar for
fruitful discussion.
These results demonstrate that the relative separation
between the NPs plays a major role for the cooperativity.
The diluted compounds (3 and the PVP coated particles) have
weak cooperativity and the amount of the residual HS Fe(II)
fraction corresponds to the percentage of Fe(II) ions present on
the particles surface. While for the concentrated ones (1 and 2),
the cooperativity is stronger. However, the degree of cooperativity
depends not only on the average distance between the objects
but on the nature of the matrix also. When the particles are
coated with the organic ligand (calix8) that imposes a distance
between the particles of around 4 nm, only a weak hysteresis is
present while for the SiO2 coated NPs a hysteresis of 15 K
occurs despite a separation of 5 nm. The observed results lead
to the conclusion that the key-point of the magnetic behaviour
stems from a conjugated effect of the nature of the matrix and
the average distance between the nanoparticles within the
nanocomposites. The nature of the interface plays a minor
role since compounds 2 and 3 are made of nanoparticles
coated with SiO2 and have a completely different magnetic
behaviour, while 3 and the PVP nanocomposite have the same
magnetic behaviour.
Notes and references
1 P. Gutlich and A. Hauser, Coord. Chem. Rev., 1990, 97, 1–22;
J. Krober, E. Codjovi, O. Kahn, F. Groliere and C. Jay, J. Am.
Chem. Soc., 1993, 115, 9810–9811; A. Hauser, J. Jeftic,
H. Romstedt, R. Hinek and H. Spiering, Coord. Chem. Rev.,
1999, 192, 471–491; V. Niel, J. M. Martinez-Agudo,
M. C. Munoz, A. B. Gaspar and J. A. Real, Inorg. Chem., 2001,
40, 3838; A. Bousseksou, G. Molnar, L. Salmon and W. Nicolazzi,
Chem. Soc. Rev., 2011, 40, 3313–3335; S. Bonhommeau, T. Guillon,
L. M. L. Daku, P. Demont, J. S. Costa, J. F. Letard, G. Molnar and
A. Bousseksou, Angew. Chem., Int. Ed., 2006, 45, 1625–1629;
S. Bonhommeau, G. Molnar, A. Galet, A. Zwick, J. A. Real,
J. J. McGarvey and A. Bousseksou, Angew. Chem., Int. Ed., 2005,
44, 4069–4073.
2 O. Kahn and J. P. Launay, Chemtronics, 1988, 3, 140; O. Kahn and
C. J. Martinez, Science, 1998, 279, 44–48; L. Salmon, G. Molnar,
D. Zitouni, C. Quintero, C. Bergaud, J. C. Micheau and
A. Bousseksou, J. Mater. Chem., 2010, 20, 5499–5503.
3 S. Cobo, G. Molnar, J. A. Real and A. Bousseksou, Angew. Chem.,
Int. Ed., 2006, 45, 5786–5789; G. Molnar, S. Cobo, J. A. Real,
F. Carcenac, E. Daran, C. Vieu and A. Bousseksou, Adv. Mater.,
2007, 19, 2163–2167; T. Forestier, S. Mornet, N. Daro,
T. Nishihara, S. Mouri, K. Tanaka, O. Fouche, E. Freysz and
J. F. Letard, Chem. Commun., 2008, 4327–4329; T. Forestier,
A. Kaiba, S. Pechev, D. Denux, P. Guionneau, C. Etrillard,
N. Daro, E. Freysz and J. F. Letard, Chem.–Eur. J., 2009, 15,
6122–6130; J. R. Galan-Mascaros, E. Coronado, A. Forment-Aliaga,
M. Monrabal-Capilla, E. Pinilla-Cienfuegos and M. Ceolin, Inorg.
Chem., 2010, 49, 5706–5714; A. Tissot, J. F. Bardeau, E. Riviere,
F. Brisset and M. L. Boillot, Dalton Trans., 2010, 39(33), 7806–7812;
C. Faulmann, J. Chahine, I. Malfant, D. de Caro, B. Cormary and
L. Valade, Dalton Trans., 2011, 40(11), 2480; J. M. Herrera, S. T.-P.
Titos-Padilla, S. X. W. Chen, J. J. Delgado and E. Colacio, Angew.
Chem., Int. Ed., 2011, 50, 3290.
4 E. Coronado, J. R. Galan-Mascaros, M. Monrabal-Capilla,
J. Garcia-Martinez and P. Pardo-Ibanez, Adv. Mater., 2007, 19,
1359–1361; J. Larionova, L. Salmon, Y. Guari, A. Tokarev,
K. Molvinger, G. Molnar and A. Bousseksou, Angew. Chem., Int.
Ed., 2008, 47, 8236–8240.
5 F. Volatron, L. Catala, E. Riviere, A. Gloter, O. Stephan and
T. Mallah, Inorg. Chem., 2008, 47, 6584–6586; A. B. Gaspar,
I. Boldog, V. Martinez, P. Pardo-Ibanez, V. Ksenofontov,
A. Bhattacharjee, P. Gutlich and J. A. Real, Angew. Chem., Int.
Ed., 2008, 47, 6433.
These conclusions may be rationalized by considering the
ability of the matrix to transmit the elastic vibrations due to
the switching of each nanoparticle from LS to HS. The
propagation of the phonons via elastic interactions is invoked
in many models to explain the cooperativity of the SCO
phenomena, and parameterized in molecular complexes by
an empirical interaction parameter G.8 In the Spiering model,
G is related to the bulk modulus of the crystal that quantifies
the compressibility of the crystal and the ability to transmit the
vibrations.9 For the case of the embedded nanoparticles,
cooperativity is due to the transmission within the nanocomposite
of the elastic forces between the single nanoparticles through
the matrix. The less compressible the matrix (high bulk
modulus) the better the propagation of the vibrations is and
the larger the hysteresis is. For a defined matrix (samples 2 and
3), the shorter the distance the better the propagation of the
elastic interactions is.
6 F. J. Arriagada and K. Osseoasare, Adv. Chem. Ser., 1994, 234,
113–128; F. J. Arriagada and K. Osseoasare, J. Colloid Interface
Sci., 1995, 170, 8–17.
7 A. B. Gaspar, V. Martinez, I. Boldog, V. Ksenofontov,
A. Bhattacharjee, P. Gutlich and J. A. Real, Chem. Mater., 2010,
22, 4271–4281.
This communication highlights the crucial influence of the
matrix surrounding the particles that propagates elastic inter-
actions: a ‘‘compressible’’ matrix leads to a lower cooperativity of
the SCO phenomena in the present case, while more rigid media,
such as silica, restores the hysteresis loop due to a stronger
cooperativity. In a first stage, this may be understood as the
variation, through the mechanical/elastic properties of the matrix
surrounding the SCO nanoparticles, of the long range elastic
interactions which, as we know, are mainly attributed to the
8 C. P. Slitcher and H. G. Drickamer, J. Chem. Phys., 1972, 56,
2142–2148.
9 V. Ksenofontov, H. Spiering, A. Schreiner, G. Levchenko,
H. A. Goodwin and P. Gutlich, J. Phys. Chem. Solids, 1999, 60,
393–399; H. Spiering, T. Kohlhaas, N. Romstedt, A. Hauser,
C. Bruns-Yilmaz, J. Kusz and P. Gutlich, Coord. Chem. Rev.,
1999, 192, 629–647.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 11501–11503 11503