2428
M. Saber et al.
LETTER
EtO2C
EtO2C
References and Notes
CN
CN
Nu
Nu (1.5–4.5 equiv)a
Tf2NH (5 mol%)
(1) (a) For authoritative reviews on N-acyliminium ion
chemistry, see: Speckamp, W. N.; Moolenaar, M. J.
Tetrahedron 2000, 56, 3817. (b) Maryanoff, B. E.; Zhang,
H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem.
Rev. 2004, 104, 1431.
(2) For two recent exhaustive reviews on the intermolecular
amidoalkylation of N,O-acetals, see: (a) Yazici, A.; Pyne, S.
G. Synthesis 2009, 339. (b) Yazici, A.; Pyne, S. G. Synthesis
2009, 513.
(3) Pin, F.; Comesse, S.; Garrigues, B.; Marchalin, Š.; Daich, A.
J. Org. Chem. 2007, 72, 1181.
(4) (a) Ben Othman, R.; Bousquet, T.; Othman, M.; Dalla, V.
Org. Lett. 2005, 7, 5335. (b) Tranchant, M. J.; Moine, C.;
Ben Othman, R.; Bousquet, T.; Othman, M.; Dalla, V.
Tetrahedron Lett. 2006, 47, 4477.
(5) Ben Othman, R.; Affani, R.; Tranchant, M. J.; Antoniotti, S.;
Duñach, E.; Dalla, V. Angew. Chem. Int. Ed. 2010, 49, 776.
(6) For some other recent reports on catalytic amidoalkylation
of N,O-acetals: (a) Okitsu, O.; Suzuki, R.; Kobayashi, S.
J. Org. Chem. 2001, 66, 809. (b) Camilo, N. S.; Pilli, R. A.
Tetrahedron Lett. 2004, 45, 2821. (c) de Godoy, L. A. F.;
Camilo, N. S.; Pilli, R. A. Tetrahedron Lett. 2006, 47, 7853.
(d) Ben Othman, R.; Bousquet, T.; Fousse, A.; Othman, M.;
Dalla, V. Org. Lett. 2005, 7, 2825; and references therein.
(e) Kinderman, S. S.; Wekking, M. M. T.; van Maarseveen,
J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T.
J. Org. Chem. 2005, 70, 5519.
OEt
O
O
N
N
R
toluene, 110 °C,
overnight
R
( )-11a–c
( )-12–15
11a R = propargyl
11b R = Bn
11c R = allyl
EtO2C
CN
EtO2C
N
CN
O
N
O
Bn
( )-13 89%a
( )-12 98%
EtO2C
CN
EtO2C
CN
OMe
O
O
N
N
NH
OMe
Bn
( )-15 86%
( )-14 83%
Scheme 2 Preliminary scope of the highly stereoselective Tf2NH-
catalyzed amidoalkylation of gem-4-cyanoester 5-ethoxy pyrrolidin-
5-ones. a 4.5 Equiv of allyltrimethylsilane were used; 1.5 equiv of in-
dole and 1,2-dimethoxybenzene were used.
(7) For impressive catalytic enantioselective approaches, see:
(a) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E.
N. J. Am. Chem. Soc. 2007, 129, 13404. (b) Raheem, I. T.;
Thiara, P. S.; Jacobsen, E. N. Org. Lett. 2008, 10, 1577.
(c) Peterson, E. A.; Jacobsen, E. N. Angew. Chem. Int. Ed.
2009, 48, 6328. (d) Muratore, M. C.; Holloway, C. A.;
Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am.
Chem. Soc. 2009, 131, 10796.
(8) Moussa, S.; Comesse, S.; Dalla, V.; Daïch, A.; Sanselme,
M.; Netchitaïlo, P. Synlett 2010, 2197.
(9) (a) Grau, F.; Heumann, A.; Duñach, E. Angew. Chem. Int.
Ed. 2006, 45, 7285. (b) Paz Muñoz, M.; Lloyd-Jones, G. C.
Eur. J. Org. Chem. 2009, 516.
(10) For a recent series of papers reporting diastereoselective
alkylation of chiral alcohol derivatives bearing an adjacent
ester group, see: (a) Rubenbauer, P.; Bach, T. Adv. Synth.
Catal. 2008, 350, 1125. (b) Stadler, D.; Bach, T. J. Org.
Chem. 2009, 74, 4747. (c) Rubenbauer, P.; Bach, T. Chem.
Commun. 2009, 2130. (d) Cozzi, P. G.; Benfatti, F. Angew.
Chem. Int. Ed. 2010, 49, 256.
lieve these findings improve the knowledge of cationic
chemistry and therefore may open new directions in this
field. Further mechanistic work aimed at gaining a deeper
understanding of the reaction mechanism is currently un-
der way in our laboratory.
–
H3N+
CO2
CHO
( )3
NC
CO2Et
NC
(0.05 equiv)
EtOH–H2O
MeO
MeO
+
EtO2C
MeO
OMe
16 95%
Br
O
EtO2C
CN
BnHN
(1.2 equiv)
OMe
O
N
NaH (1.2 equiv)
THF, r.t., 12 h
OMe
(11) For related studies in our group, see: Comesse, S.; Sanselme,
M.; Daïch, A. J. Org. Chem. 2008, 73, 5566.
Bn
( )-15 84%
(12) Typical Procedure for the Preparation of 4a–d
To a solution of an N,O-acetal 3a–d (0.4 mmol) in a freshly
distilled solvent as indicated in Table 1 (1.5 mL) was added
dropwise a 0.5 M CH2Cl2 solution of HNTf2 (40 mL, 0.02
mmol, 0.05 equiv). The reaction was stirred at the temper-
ature indicated in Table 1 and followed by TLC. At the end
of the reaction, the solution was quenched at r.t. by a 5% aq
solution of NaHCO3, and the aqueous phase was extracted
two times with EtOAc (3 mL). The combined organic layers
were dried over MgSO4, the solvent was removed under
vacuum, and the residue was then purified by silica gel
chromatography to provide the desired tricycles 4a–d.
Physical Data for 4b
Scheme 3 Determination of the stereochemistry of compound 15 by
chemical correlation
Supporting Information for this article is available online at
Acknowledgment
We are grateful to the University of Le Havre for the aid ‘ATER po-
sition’, attributed to one from us (M. S.) and to Miss Aurore Grand
for experimental contribution. We thank Dr. Morgane Sanselme for
her generous support in X-ray crystallographic analysis of 4d.
Isolated as white solid (recrystallized from Et2O); mp 157–
159 °C; yield 95% (EtOAc–cyclohexane, 40:60). IR (KBr):
1728, 1691 cm–1. 1H NMR (300 MHz, CDCl3): d = 0.84 (t,
J = 7.0 Hz, 3 H), 1.36 (t, J = 7.0 Hz, 3 H), 2.60 (d, J = 16.4
Synlett 2011, No. 16, 2425–2429 © Thieme Stuttgart · New York