Journal of Medicinal Chemistry
Article
(17) Zhang, S.; Iwata, K.; Lachenmann, M. J.; Peng, J. W.; Li, S.;
Stimson, E. R.; Lu, Y.; Felix, A. M.; Maggio, J. E.; Lee, J. P. The
Alzheimer’s peptide Aβ adopts a collapsed coil structure in water. J.
Struct. Biol. 2000, 130, 130−141.
(35) Maji, S. K.; Ogorzalek Loo, R. R.; Inayathullah, M.; Spring, S.
M.; Vollers, S. S.; Condron, M. M.; Bitan, G.; Loo, J. A.; Teplow, D. B.
Amino acid position-specific contributions to amyloid β-protein
oligomerization. J. Biol. Chem. 2009, 284, 23580−23591.
(36) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 2nd ed.;
Kluwer Academic/Plenum Publishers: New York, 1999; p 698.
(37) Zagorski, M. G.; Yang, J.; Shao, H.; Ma, K.; Zeng, H.; Hong, A.
Methodological and chemical factors affecting amyloid β peptide
amyloidogenicity. Methods Enzymol. 1999, 309, 189−204.
(38) Stine, W. B. Jr.; Dahlgren, K. N.; Krafft, G. A.; LaDu, M. J. In
vitro characterization of conditions for amyloid-β peptide
oligomerization and fibrillogenesis. J. Biol. Chem. 2003, 278, 11612−
11622.
(18) Hochdorffer, K.; Marz-Berberich, J.; Nagel-Steger, L.; Epple, M.;
̈
̈
Meyer-Zaika, W.; Horn, A. H.; Sticht, H.; Sinha, S.; Bitan, G.;
Schrader, T. Rational design of β-sheet ligands against Aβ42-induced
toxicity. J. Am. Chem. Soc. 2011, 133, 4348−4358.
(19) Hetenyi, C.; Szabo, Z.; Klement, T.; Datki, Z.; Kortvelyesi, T.;
Zarandi, M.; Penke, B. Pentapeptide amides interfere with the
aggregation of β-amyloid peptide of Alzheimer’s disease. Biochem.
Biophys. Res. Commun. 2002, 292, 931−936.
(20) Szegedi, V.; Fulop, L.; Farkas, T.; Rozsa, E.; Robotka, H.; Kis,
̈
̈
Z.; Penke, Z.; Horvath, S.; Molnar, Z.; Datki, Z.; Soos, K.; Toldi, J.;
Budai, D.; Zarandi, M.; Penke, B. Pentapeptides derived from Aβ1−42
protect neurons from the modulatory effect of Aβ fibrilsan in vitro
and in vivo electrophysiological study. Neurobiol. Dis. 2005, 18, 499−
508.
(39) Yan, Y.; Wang, C. Aβ42 is more rigid than Aβ40 at the C
terminus: implications for Aβ aggregation and toxicity. J. Mol. Biol.
2006, 364, 853−862.
(40) Gessel, M. M.; Wu, C.; Li, H.; Bitan, G.; Shea, J. E.; Bowers, M.
T. Unpublished results.
(21) Pratim Bose, P.; Chatterjee, U.; Nerelius, C.; Govender, T.;
Norstrom, T.; Gogoll, A.; Sandegren, A.; Gothelid, E.; Johansson, J.;
Arvidsson, P. I. Poly-N-methylated amyloid β-peptide (Aβ) C-terminal
fragments reduce Aβ toxicity in vitro and in Drosophila melanogaster. J.
Med. Chem. 2009, 52, 8002−8009.
(22) Rahimi, A. F.; Shanmugam, A.; Bitan, G. Structure−function
relationships of pre-fibrillar protein assemblies in Alzheimer’s disease
and related disorders. Curr. Alzheimer Res. 2008, 5, 319−341.
(23) Fradinger, E. A.; Monien, B. H.; Urbanc, B.; Lomakin, A.; Tan,
M.; Li, H.; Spring, S. M.; Condron, M. M.; Cruz, L.; Xie, C. W.;
Benedek, G. B.; Bitan, G. C-Terminal peptides coassemble into Aβ42
oligomers and protect neurons against Aβ42-induced neurotoxicity.
Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 14175−14180.
(24) Li, H.; Monien, B. H.; Lomakin, A.; Zemel, R.; Fradinger, E. A.;
Tan, M.; Spring, S. M.; Urbanc, B.; Xie, C. W.; Benedek, G. B.; Bitan,
G. Mechanistic investigation of the inhibition of Aβ42 assembly and
neurotoxicity by Aβ42 C-terminal fragments. Biochemistry 2010, 49,
6358−6364.
(25) Urbanc, B.; Betnel, M.; Cruz, L.; Li, H.; Fradinger, E. A.;
Monien, B. H.; Bitan, G. Structural basis for Aβ(1−42) toxicity
inhibition by Aβ C-terminal fragments: discrete molecular dynamics
study. J. Mol. Biol. 2011, 410, 316−328.
(26) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 2001, 46, 3−26.
(27) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward,
K. W.; Kopple, K. D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615−2623.
(28) Bertrand, R.; Solary, E.; O’Connor, P.; Kohn, K. W.; Pommier,
Y. Induction of a common pathway of apoptosis by staurosporine. Exp.
Cell Res. 1994, 211, 314−321.
(29) Arispe, N.; Diaz, J. C.; Simakova, O. Aβ ion channels. Prospects
for treating Alzheimer’s disease with Aβ channel blockers. Biochim.
Biophys. Acta 2007, 1768, 1952−1965.
(30) Sokolov, Y.; Kozak, J. A.; Kayed, R.; Chanturiya, A.; Glabe, C.;
Hall, J. E. Soluble amyloid oligomers increase bilayer conductance by
altering dielectric structure. J. Gen. Physiol. 2006, 128, 637−647.
(31) Fringeli, U. P.; Fringeli, M. Pore formation in lipid membranes
by alamethicin. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 3852−3856.
(32) Auluck, P. K.; Caraveo, G.; Lindquist, S. α-Synuclein: membrane
interactions and toxicity in Parkinson’s disease. Annu. Rev. Cell Dev.
Biol. 2010, 26, 211−233.
(33) Condron, M. M.; Monien, B. H.; Bitan, G. Synthesis and
purification of highly hydrophobic peptides derived from the C-
terminus of amyloid β-protein. Open Biotechnol. J. 2008, 2, 87−93.
(34) Maji, S. K.; Amsden, J. J.; Rothschild, K. J.; Condron, M. M.;
Teplow, D. B. Conformational dynamics of amyloid β-protein
assembly probed using intrinsic fluorescence. Biochemistry 2005, 44,
13365−13376.
(41) Janssen, J. C.; Beck, J. A.; Campbell, T. A.; Dickinson, A.; Fox,
N. C.; Harvey, R. J.; Houlden, H.; Rossor, M. N.; Collinge, J. Early
onset familial Alzheimer’s diseasemutation frequency in 31 families.
Neurology 2003, 60, 235−239.
(42) Wakutani, Y.; Watanabe, K.; Adachi, Y.; Wada-Isoe, K.;
Urakami, K.; Ninomiya, H.; Saido, T. C.; Hashimoto, T.; Iwatsubo,
T.; Nakashima, K. Novel amyloid precursor protein gene missense
mutation (D678N) in probable familial Alzheimer’s disease. J. Neurol.
Neurosurg. Psychiatry 2004, 75, 1039−1042.
(43) Ono, K.; Condron, M. M.; Teplow, D. B. Effects of the English
(H6R) and Tottori (D7N) familial Alzheimer disease mutations on
amyloid β-protein assembly and toxicity. J. Biol. Chem. 2010, 285,
23186−23197.
(44) Qahwash, I.; Weiland, K. L.; Lu, Y. F.; Sarver, R. W.; Kletzien, R.
F.; Yan, R. Q. Identification of a mutant amyloid peptide that
predominantly forms neurotoxic protofibrillar aggregates. J. Biol. Chem.
2003, 278, 23187−23195.
(45) He, W. L.; Barrow, C. J. The Aβ 3-pyroglutamyl and 11-
pyroglutamyl peptides found in senile plaque have greater β-sheet
forming and aggregation propensities in vitro than full-length Aβ.
Biochemistry 1999, 38, 10871−10877.
(46) Schilling, S.; Lauber, T.; Schaupp, M.; Manhart, S.; Scheel, E.;
Bohm, G.; Demuth, H. U. On the seeding and oligomerization of
pGlu-amyloid peptides (in vitro). Biochemistry 2006, 45, 12393−
12399.
(47) Russo, C.; Violani, E.; Salis, S.; Venezia, V.; Dolcini, V.;
Damonte, G.; Benatti, U.; D’Arrigo, C.; Patrone, E.; Carlo, P.;
Schettini, G. Pyroglutamate-modified amyloid β-peptides Aβ
N3(pE)-strongly affect cultured neuron and astrocyte survival. J.
Neurochem. 2002, 82, 1480−1489.
(48) Wirths, O.; Breyhan, H.; Cynis, H.; Schilling, S.; Demuth, H. U.;
Bayer, T. A. Intraneuronal pyroglutamate-Aβ 3−42 triggers
neurodegeneration and lethal neurological deficits in a transgenic
mouse model. Acta Neuropathol. 2009, 118, 487−496.
(49) Hwang, C. S.; Shemorry, A.; Varshavsky, A. N-Terminal
acetylation of cellular proteins creates specific degradation signals.
Science 2010, 327, 973−977.
(50) Urbanc, B.; Betnel, M.; Cruz, L.; Bitan, G.; Teplow, D. B.
Elucidation of amyloid β-protein oligomerization mechanisms: discrete
molecular dynamics study. J. Am. Chem. Soc. 2010, 132, 4266−4280.
(51) Zhao, W. Q.; Toolan, D.; Hepler, R. W.; Wolfe, A. L.; Yu, Y.;
Price, E.; Uebele, V. N.; Schachter, J. B.; Reynolds, I. J.; Renger, J. J.;
McCampbell, A.; Ray, W. J. High throughput monitoring of amyloid-
β42 assembly into soluble oligomers achieved by sensitive
conformation state-dependent immunoassays. J. Alzheimer's Dis.
2011, 25, 655−669.
(52) Chan, W. C.; White, P. D. Fmoc Solid-Phase Peptide Synthesis: A
Practical Approach; Oxford University Press: New York, 2000; p xxiv,
346.
8459
dx.doi.org/10.1021/jm200982p | J. Med. Chem. 2011, 54, 8451−8460