REACTIONS OF 2-PHENYL-4,4-BIS(TRIFLUOROMETHYL)-4,5-DIHYDRO-...
1525
1
3
1
3
(C13, JCH = 161.0, JCH = 8.4 Hz), 126.86 m (br.s)
(s) (C17)129.10 d.d.d (d) (C26, JCH = 160.9, JCP
=
(C12), 127.06 d.d (s) (C15, 1JCH = 161.6, 3JCH = 8.4 Hz),
15.5, 3JCH = 8.3 Hz), 129.52 m (s) (C18), 132.17 d.d.d.d
(d) (C25, 1JCH = 163.1, 2JCP = 10.5, 3JCH = 7.4, 7.4 Hz),
127.89 m (br.s) (C17), 128.21 d.d.d (d) (C26, JCH
=
1
162.2, JCP = 19.2, JCH = 7.2 Hz), 130.80 d.d (s) (C32,
132.36 br.d.d (s) (C32, JCH = 164.4, JCH = 8.1 Hz),
3
3
1
3
1JCH = 165.8, JCH = 8.4 Hz), 132.47 d.m (d) (C27,
133.66 d.t.d.d (br.s) (C27, JCH = 162.5, JCP = 2.9,
3
1
4
1JCH = 165.2, JCH = 7.2, JCP = 3.6 Hz), 133.16 d.t (d)
3JCH = 7.6, 2JCH = 1.4 Hz), 137.94 d.d.d (s) (C34, 1JCH
=
3
4
1
3
3
2
(C24, JPC = 238.5, JCH = 7.8 Hz), 133.62 d.d.d.d (d)
161.2, JCH = 9.2, JCH = 1.8 Hz), 140.75 br.d.d (br.d)
1
2
3
2
3
(C25, JCH = 165.2, JC2P = 10.8, JCH = 7.2, 7.2 Hz),
(C3, JCP = 2.3, JCH = 3.5–4.0 Hz), 162.22 m (br.s)
134.91 m (d) (C2, C3, JCP = 2.4 Hz), 136.09 d.d (s)
(C10, JCP = 2.0, JCH = 9.8, 7.8, JCH = 1.5 Hz),
194.10 br.d (s) (C8, 3JCH = 3.9 Hz). 19F NMR spectrum
(acetone-d6): δF –72.86 ppm, s. 31P NMR spectrum
2
3
2
1
3
(C34, JCH = 161.6, JCH = 9.0 Hz), 152.52 d.d.d (d)
(C10, 2JCP = 12.0, 3JCH = 8.4, 8.4 Hz), 188.88 d (s) (C8,
3JCH = 3.0 Hz). 19F NMR spectrum (CDCl3), δF, ppm:
–72.05 q (4JFF = 9.2 Hz), –70.78 q (4JFF = 9.2 Hz).
31P–{1H} NMR spectrum (CDCl3, 121.42 MHz):
δP –31.9 ppm (s). Found, %: C 59.63; H 2.94.
C30H17F6O5P. Calculated, %: C 59.80; H 2.82.
(acetone-d6, 243.0 MHz): δP 21.2 ppm, br.t.t (3JPH
=
4
15.2, JPH = 4.5 Hz). Found, %: C 59.67; H 3.11.
C30H17F6O5P. Calculated, %: C 59.80; H 2.82.
2,4′,5′-Triphenyl-4,4-bis(trifluoromethyl)-4,5-di-
hydrospiro[[1,3,2]benzodioxaphosphepine-2,2′-
[1,3,2]dioxaphosphol]-5-one (VII). Dibenzoyl (V),
2.53 g (0.012 mol), was added at 20°C under argon to
a solution of 4.74 g (0.012 mol) of compound I in
30 ml of methylene chloride. The mixture was kept for
2 months at 20°C and then for 2 days at 0°C, and the
precipitate was filtered off and dried under reduced
pressure (12 mm). Yield 81%, mp 78–82°C. 31P–{1H}
NMR spectrum (CDCl3, 121.42 MHz): δP –36.9 ppm.
Spirophosphorane VI underwent hydrolysis on ex-
posure to atmospheric moisture under mild conditions
(when its solution in CDCl3 was kept at 20°C) to give
compound VIII which was isolated as fine colorless
crystals with mp 137°C. H NMR spectrum (acetone-
d6, 600 MHz), δ, ppm: 7.04 d.d.d (1H, 33-H, J32,33
1
3
=
3
4
8.3, J334,33 = 7.2, J35,33 = 1.2 Hz), 7.09 br.d.d.d (1H,
4
4
35-H, JHH = 8.4, JHH = 1.2, JHP = 0.5–0.6 Hz),
3
19F NMR spectrum (CDCl3), δF, ppm: –70.6 q (4JFF
=
7.52 m and 7.56 m (2H, 14-H, 15-H, J13, 14 = 8.1,
3J15,14 = 7.1, J16, 14 = 1.2, J16, 15 = 8.2, J14, 15 = 7.1,
4J13, 15 = 1.4 Hz), 7.54 m (2H, 26-H), 7.62 m (1H,
27-H), 7.64 d.d.d (1H, 34-H, 3J35,34 = 8.4, 3J33,34 = 7.2,
4J32,34 = 1.4–1.5 Hz), 7.68–7.70 m (2H, 20-H, 21-H,
AB part of ABMX spin system), 8.05 br.d.d (1H, 13-H,
4
3
3
9.1 Hz), –72.3 q (4JFF = 10.7 Hz). H NMR spectrum
(CDCl3, 300 MHz): δ 6.92–8.55 ppm, m. Found, %:
C 60.08; H 3.37. C30H19F6O5P. Calculated, %: C 59.60;
H 3.15.
1
This study was performed under financial support
by the Russian Foundation for Basic Research (project
no. 10-03-00525).
3JHH = 8.1, JHH = 1.2 Hz), 8.08 br.d.d.m (2H, 25-H,
4
3JHP = 15.5, 3JHH = 8.2, 4JHH = 1.3 Hz), 8.41 br.d.d (1H,
3
4
32-H, JHH = 8.3, JHH = 1.4–1.5 Hz), 8.46 m (1H,
22-H), 8.68 br.d (1H, 16-H, 3JHH = 8.2 Hz), 8.73 m (1H,
19-H). 13C NMR spectrum (acetone-d6, 150.9 MHz),
REFERENCES
δC, ppm: 82.59 sept (sept) (C7, JCF = 28.7 Hz),
2
1. Corbridge, D.E.C., Phosphorus 2000: Chemistry, Bio-
chemistry & Technology, Amsterdam: Elsevier, 2000.
118.52 d.d (s) (C19, JCH = 162.9, JCH = 7.6 Hz),
1
3
119.84 br.d.d (s) (C9, 3JCH = 7.4, 5.5 Hz), 119.84 d.d (s)
2. The Chemistry of Organophosphorus Compounds,
1
(C16, JCH = 164.9–65.0, 3JCH = 8.0 Hz), 121.38 d.d (s)
Hartley, F.R., Ed., Chichester: Wiley, 1996, vol. 4.
1
3
(C22, JCH = 161.6, JCH = 7.4 Hz), 122.13 br.q (br.q)
3. Handbook of Organophosphorus Chemistry, Engel, R.,
(C30, C31, JFC = 289.3 Hz), 122.97 d.d (s) (C13, JCH
=
1
1
Ed., New York: Marcel Dekker, 1992.
157.5–158.0, JCH = 7.7 Hz), 122.97 d.d.d (d) (C35,
1JCH = 157.5–158.0 Hz, overlapped by the C13 signal),
3
4. Quin, L.D., A Guide to Organophosphorus Chemistry,
New York: Wiley, 2000.
123.52 d.d.d (s) (C20, JCH = 162.2, JCH = 5.1, JCH
=
=
=
=
=
=
1
3
2
5. Mironov, V.F., Burnaeva, L.M., Litvinov, I.A., Kotoro-
va, Yu.Yu., Dobrynin, A.B., Musin, R.Z., and Konova-
lova, I.V., Izv. Ross. Akad. Nauk, Ser. Khim., 2004,
p. 1640.
3.5 Hz), 125.10 d.d (s) (C15, JCH = 161.3, JCH
1
3
8.3 Hz), 126.94 m (s) (C23), 127.17 d.d (s) (C21, 1JCH
160.9, JCH = 7.4 Hz), 127.26 d.d (s) (C14, JCH
3
1
160.8, JCH = 8.4 Hz), 127.45 br.d.d (s) (C33, JCH
3
1
6. Gubaidullin, A.T., Mironov, V.F., Burnaeva, L.M., Litvi-
nov, I.A., Dobrynin, A.B., Goryunov, E.I., Ivkova, G.A.,
Konovalova, I.V., and Mastryukova, T.A., Russ. J. Gen.
Chem., 2004, vol. 74, p. 842.
160.5, JCH = 8.0 Hz), 127.75 br.d.t (d) (C24, JCP
3
1
189.0, 3JCH = 7.8 Hz), 127.82 m (s) (C12), 128.24 d.d.d
(d) (C2, 2JCP = 8.8, 3JCH = 4.7, 4JCH = 1.5 Hz), 128.38 m
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 47 No. 10 2011